ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Целые ненулевые числа a1, a2, ..., an таковы, что равенство

выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.
  a) Докажите, что число n чётно.
  б) При каком наименьшем n такие числа существуют?

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98497  (#1)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Делимость чисел. Общие свойства ]
[ Перебор случаев ]
Сложность: 3+
Классы: 8,9,10,11

Натуральные числа a, b, c, d таковы, что наименьшее общее кратное этих чисел равно  a + b + c + d.
Докажите, что abcd делится на 3 или на 5 (или на то и другое).

Прислать комментарий     Решение

Задача 98503  (#2)

Темы:   [ Куб ]
[ Сечения, развертки и остовы (прочее) ]
[ Правильные многоугольники ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

Для какого наибольшего n можно выбрать на поверхности куба n точек так, чтобы не все они лежали в одной грани куба и при этом были вершинами правильного (плоского) n-угольника.

Прислать комментарий     Решение

Задача 98504  (#3)

Темы:   [ Векторы помогают решить задачу ]
[ Подобные фигуры ]
Сложность: 3+
Классы: 10,11

Длины сторон треугольника ABC равны a, b и c  (AB = c,  BC = a,  CA = b  и  a < b < c).  На лучах BC и AC отмечены соответственно такие точки B1 и A1, что  BB1 = AA1 = c.  На лучах CA и BA отмечены соответственно такие точки C2 и B2, что  CC2 = BB2 = a.  Найти  A1B1 : C2B2.

Прислать комментарий     Решение

Задача 98505  (#4)

Темы:   [ Рациональные функции (прочее) ]
[ Четность и нечетность ]
[ Монотонность, ограниченность ]
Сложность: 4-
Классы: 10,11

Целые ненулевые числа a1, a2, ..., an таковы, что равенство

выполнено при всех целых значениях x, входящих в область определения дроби, стоящей в левой части.
  a) Докажите, что число n чётно.
  б) При каком наименьшем n такие числа существуют?

Прислать комментарий     Решение

Задача 98506  (#5)

Темы:   [ Шахматные доски и шахматные фигуры ]
[ Подсчет двумя способами ]
[ Доказательство от противного ]
Сложность: 4
Классы: 10,11

Клетки доски m×n покрашены в два цвета. Известно, что на какую бы клетку ни поставить ладью, она будет бить больше клеток не того цвета, на котором стоит (клетка под ладьей тоже считается побитой). Докажите, что на каждой вертикали и каждой горизонтали клеток обоих цветов поровну.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .