Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 5 задач
Версия для печати
Убрать все задачи

На доске написано число 1. Если на доске написано число а, его можно заменить любым числом вида  a + d,  где d взаимно просто с а и  10 ≤ d ≤ 20.
Можно ли через несколько таких операций получить на доске число 18! ?

Вниз   Решение


У бабушки была клетчатая тряпочка (см. рисунок). Однажды она захотела сшить из неё подстилку коту в виде квадрата размером 5×5. Бабушка разрезала тряпочку на три части и сшила из них квадратный коврик, также раскрашенный в шахматном порядке. Покажите, как она могла это сделать (у тряпочки одна сторона – лицевая, а другая – изнаночная, то есть части можно поворачивать, но нельзя переворачивать).

ВверхВниз   Решение


Автор: Шноль Д.Э.

Папа, Маша и Яша вместе идут в школу. Пока папа делает 3 шага, Маша делает 5 шагов. Пока Маша делает 3 шага, Яша делает 5 шагов. Маша и Яша посчитали, что вместе они сделали 400 шагов. Сколько шагов сделал папа?

ВверхВниз   Решение


Автор: Фольклор

Замените буквы цифрами в ребусе  Г + О = Л – О = В × О = Л – О = М – К = А  так, чтобы все равенства стали верными; при этом одинаковым буквам должны соответствовать одинаковые цифры, а различным – различные. Найдите все решения ребуса.

ВверхВниз   Решение


а) На две клетки шахматной доски выставляются чёрная и белая фишки. Разрешается по очереди передвигать их, каждым ходом сдвигая очередную фишку на любое свободное соседнее поле по вертикали или горизонтали. Могут ли на доске в результате таких ходов встретиться все возможные позиции расположения этих двух фишек, причём ровно по одному разу?
б) А если разрешается сдвигать фишки в любом порядке (не обязательно по очереди)?

Вверх   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 105103  (#1)

Темы:   [ Задачи на проценты и отношения ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 7,8,9,10

Автор: Вялый М.Н.

В некоторой стране суммарная зарплата 10% самых высокооплачиваемых работников составляет 90% зарплаты всех работников. Может ли так быть, что в каждом из регионов, на которые делится эта страна, зарплата любых 10% работников составляет не более 11% всей зарплаты, выплачиваемой в этом регионе?

Прислать комментарий     Решение

Задача 105105  (#2)

Темы:   [ Теория игр (прочее) ]
[ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 7,8,9

Камни лежат в трёх кучках: в одной – 51 камень, в другой – 49, а в третьей – 5. Разрешается объединять любые кучки в одну, а также разделять кучку из чётного количества камней на две равные. Можно ли получить 105 кучек по одному камню в каждой?

Прислать комментарий     Решение

Задача 105104  (#3)

Темы:   [ Три точки, лежащие на одной прямой ]
[ Вписанный угол равен половине центрального ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
[ Вписанные четырехугольники (прочее) ]
[ Свойства биссектрис, конкуррентность ]
[ Биссектриса угла (ГМТ) ]
[ Вписанный угол, опирающийся на диаметр ]
[ Вписанные и описанные окружности ]
Сложность: 3+
Классы: 8,9,10

Внутри угла с вершиной M отмечена точка A. Из этой точки выпустили шар, который отразился от одной стороны угла в точке B, затем от другой стороны в точке C и вернулся в A ("угол падения" равен "углу отражения", см. рис.). Докажите, что центр O описанной окружности треугольника BCM лежит на прямой AM. (Шар считайте точкой.)

Прислать комментарий     Решение

Задача 98521  (#4)

Темы:   [ Выпуклые многоугольники ]
[ Разные задачи на разрезания ]
[ Принцип крайнего (прочее) ]
Сложность: 4-
Классы: 8,9

На доске нарисовали выпуклый многоугольник. В нём провели несколько диагоналей, не пересекающихся внутри него, так что он оказался разбит на треугольники. Затем возле каждой вершины записали число треугольников, примыкающих к этой вершине, после чего все диагонали стерли. Можно ли по оставшимся возле вершин числам восстановить стёртые диагонали?

Прислать комментарий     Решение

Задача 98522  (#5)

Темы:   [ Шахматная раскраска ]
[ Шахматные доски и шахматные фигуры ]
[ Правило произведения ]
[ Разбиения на пары и группы; биекции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9

а) На две клетки шахматной доски выставляются чёрная и белая фишки. Разрешается по очереди передвигать их, каждым ходом сдвигая очередную фишку на любое свободное соседнее поле по вертикали или горизонтали. Могут ли на доске в результате таких ходов встретиться все возможные позиции расположения этих двух фишек, причём ровно по одному разу?
б) А если разрешается сдвигать фишки в любом порядке (не обязательно по очереди)?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .