|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
Главы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Имеется набор гирь, веса которых в граммах: 1, 2, 4,... , 512 (последовательные степени двойки) – по одной гире каждого веса. Груз разрешается взвешивать с помощью этого набора, кладя гири на обе чашки весов.
Задача Иосифа Флавия. n человек выстраиваются по кругу и нумеруются числами от 1 до n. Затем из них исключается каждый второй до тех пор, пока не останется только один человек. Например, если n = 10, то порядок исключения таков: 2, 4, 6, 8, 10, 3, 7, 1, 9, так что остается номер 5. Для данного n будем обозначать через J(n) номер последнего оставшегося человека. Докажите, что а) J(2n) = 2J(n) - 1; б) J(2n + 1) = 2J(n) + 1; в) если n = (1bm - 1bm - 2...b1b0)2, то J(n) = (bm - 1bm - 2...b1b01)2. |
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 180]
Можно ли построить три дома, вырыть три колодца и соединить тропинками каждый дом с каждым колодцем так, чтобы тропинки не пересекались?
Докажите справедливость формулы
Существует ли такое натуральное x, что x² + x + 1 делится на 1985?
Число x оканчивается на 5. Доказать, что x² оканчивается на 25.
Найти последнюю цифру числа 71988 + 91988.
Страница: << 12 13 14 15 16 17 18 >> [Всего задач: 180] |
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|