ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 [Всего задач: 42]      



Задача 31271  (#41)

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 2+
Классы: 6,7,8

При каких n   n² – 6n – 4  делится на 13?

Прислать комментарий     Решение

Задача 31272  (#42)

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 6,7,8

Доказать, что в любой бесконечной арифметической прогрессии из натуральных чисел
  a) имеется бесконечно много составных чисел.
  б) имеется или бесконечно много квадратов, или ни одного.

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .