ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 104]
Окружность S касается окружностей S1 и S2 в
точках A1 и A2; B — точка окружности S, а K1
и K2 — вторые точки пересечения прямых A1B и A2B с
окружностями S1 и S2. Докажите, что если прямая K1K2
касается окружности S1, то она касается и окружности S2.
В окружность вписаны равнобедренные трапеции ABCD
и
A1B1C1D1 с соответственно параллельными сторонами.
Докажите, что AC = A1C1.
Из точки M, двигающейся по окружности, опускаются
перпендикуляры MP и MQ на диаметры AB и CD.
Докажите, что длина отрезка PQ не зависит от положения точки M.
В треугольнике ABC угол B равен 60o, биссектрисы AD и CE пересекаются в точке O. Докажите, что OD = OE.
В треугольнике ABC углы при вершинах B и C равны 40°, BD – биссектриса угла B. Докажите, что BD + DA = BC.
Страница: << 5 6 7 8 9 10 11 >> [Всего задач: 104]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке