ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

На плоскости лежат две одинаковые фигуры, имеющие форму буквы ``Г'' . Концы коротких палочек у букв ``Г'' обозначим через A и A'. Длинные палочки разделены на n равных частей точками a1, ..., an - 1; a'1, ..., a'n - 1 (точки деления нумеруются от концов длинных палочек). Проводятся прямые Aa1, Aa2, ..., Aan - 1; A'a$\scriptstyle \prime$1, A'a'2, ..., A'a'n - 1. Точку пересечения прямых Aa1 и A'a$\scriptstyle \prime$1 обозначим через X1, прямых Aa2 и A'a$\scriptstyle \prime$2 — через X2 и т.д. Доказать, что точки X1, X2, ..., Xn - 1 образуют выпуклый многоугольник.

Примечание Problems.Ru: Предполагается, что данные фигуры совмещаются движением, сохраняющим ориентацию.

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 56555

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 2
Классы: 8

На окружности даны точки A, B, C, D в указанном порядке. M — середина дуги AB. Обозначим точки пересечения хорд MC и MD с хордой AB через E и K. Докажите, что KECD — вписанный четырехугольник.
Прислать комментарий     Решение


Задача 56556

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

По стороне правильного треугольника катится окружность радиуса, равного его высоте. Докажите, что угловая величина дуги, высекаемой на окружности сторонами треугольника, всегда равна  60o.
Прислать комментарий     Решение


Задача 56557

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

Диагонали равнобедренной трапеции ABCD с боковой стороной AB пересекаются в точке P. Докажите, что центр O ее описанной окружности лежит на описанной окружности треугольника APB.
Прислать комментарий     Решение


Задача 56558

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

На окружности даны точки A, B, C, D в указанном порядке;  A1, B1, C1 и D1 — середины дуг AB, BC, CD и DA соответственно. Докажите, что  A1C1 $ \perp$ B1D1.
Прислать комментарий     Решение


Задача 56559

Тема:   [ Величина угла между двумя хордами и двумя секущими ]
Сложность: 3
Классы: 8

Внутри треугольника ABC взята точка P так, что  $ \angle$BPC = $ \angle$A + 60o,$ \angle$APC = $ \angle$B + 60o и  $ \angle$APB = $ \angle$C + 60o. Прямые AP, BP и CP пересекают описанную окружность треугольника ABC в точках A', B' и C'. Докажите, что треугольник A'B'C' правильный.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .