ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Параграфы:
|
|||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]
Шестиугольник ABCDEF вписан в окружность.
Диагонали AD, BE и CF являются диаметрами этой окружности.
Докажите, что площадь шестиугольника ABCDEF равна
удвоенной площади треугольника ACE.
Внутри выпуклого четырехугольника ABCD существует
такая точка O, что площади треугольников
OAB, OBC, OCD и ODA равны.
Докажите, что одна из диагоналей четырехугольника делит другую пополам.
Высота трапеции, диагонали которой взаимно перпендикулярны, равна 4. Найдите площадь трапеции, если известно, что одна из её диагоналей равна 5.
Каждая диагональ выпуклого пятиугольника ABCDE
отсекает от него треугольник единичной площади. Вычислите
площадь пятиугольника ABCDE.
В прямоугольник ABCD вписаны два различных
прямоугольника, имеющих общую вершину K на стороне AB. Докажите,
что сумма их площадей равна площади прямоугольника ABCD.
Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 69]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке