ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Рассматривается произвольный многоугольник (возможно, невыпуклый).
  а) Всегда ли найдётся хорда этого многоугольника, которая делит его площадь пополам?
  б) Докажите, что найдётся такая хорда, что площадь каждой из частей, на которые она разбивает многоугольник, не меньше чем ⅓ площади всего многоугольника.

  в) Можно ли в пункте б) заменить число ⅓ на большее?
(Хордой многоугольника называется отрезок, концы которого принадлежат контуру многоугольника, а сам он целиком принадлежит многоугольнику, включая контур).

   Решение

Задачи

Страница: << 1 2 3 4 >> [Всего задач: 16]      



Задача 56903

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

а) Серединный перпендикуляр к биссектрисе AD треугольника ABC пересекает прямую BC в точке E. Докажите, что  BE : CE = c2 : b2.
б) Докажите, что точки пересечения серединных перпендикуляров к биссектрисам треугольников и продолжений соответствующих сторон лежат на одной прямой.
Прислать комментарий     Решение


Задача 56904

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

Из вершины C прямого угла треугольника ABC опущена высота CK, и в треугольнике ACK проведена биссектриса CE. Прямая, проходящая через точку B параллельно CE, пересекает CK в точке F. Докажите, что прямая EF делит отрезок AC пополам.
Прислать комментарий     Решение


Задача 56905

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 5
Классы: 9

На прямых BC, CA и AB взяты точки A1, B1 и C1, причем точки A1, B1 и C1 лежат на одной прямой. Прямые, симметричные прямым AA1, BB1 и CC1 относительно соответствующих биссектрис треугольника ABC, пересекают прямые BC, CA и AB в точках A2, B2 и C2. Докажите, что точки A2, B2 и C2 лежат на одной прямой.
Прислать комментарий     Решение


Задача 56906

Тема:   [ Теоремы Чевы и Менелая ]
Сложность: 6
Классы: 9

На сторонах BC, CA и AB треугольника ABC (или на их продолжениях) взяты точки A1, B1 и C1, лежащие на одной прямой. Докажите, что

$\displaystyle {\frac{AB}{BC_1}}$ . $\displaystyle {\frac{C_1A_1}{B_1A_1}}$ . $\displaystyle {\frac{A_1B}{BC}}$ . $\displaystyle {\frac{CB_1}{B_1A}}$ = 1.


Прислать комментарий     Решение

Задача 56907

 [Теорема Дезарга]
Темы:   [ Теоремы Чевы и Менелая ]
[ Переведем данную прямую на бесконечность ]
Сложность: 6
Классы: 9,10,11

Прямые  AA1, BB1, CC1 пересекаются в одной точке O. Докажите, что точки пересечения прямых AB и A1B1BC и B1C1AC и A1C1 лежат на одной прямой (Дезарг).
Прислать комментарий     Решение


Страница: << 1 2 3 4 >> [Всего задач: 16]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .