ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 103]      



Задача 57324  (#09.020)

Темы:   [ Сумма длин диагоналей четырехугольника ]
[ Средние величины ]
[ Выпуклые многоугольники ]
Сложность: 4-
Классы: 8,9,10

Докажите, что среднее арифметическое длин сторон произвольного выпуклого многоугольника меньше среднего арифметического длин всех его диагоналей.

Прислать комментарий     Решение

Задача 57325  (#09.021)

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5+
Классы: 8

Пусть дан выпуклый (2n + 1)-угольник  A1A3A5...A2n + 1A2...A2n. Докажите, что среди всех замкнутых ломаных с вершинами в его вершинах наибольшую длину имеет ломаная  A1A2A3...A2n + 1A1.
Прислать комментарий     Решение


Задача 57326  (#09.022)

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 2
Классы: 6,7,8

В. треугольнике длины двух сторон равны 3, 14 и 0, 67. Найдите длину третьей стороны, если известно, что она является целым числом.
Прислать комментарий     Решение


Задача 55228  (#09.023)

Тема:   [ Сумма длин диагоналей четырехугольника ]
Сложность: 5
Классы: 8,9

На плоскости даны n красных и n синих точек, никакие три из которых не лежат на одной прямой. Докажите, что можно провести n отрезков с разноцветными концами, не имеющих общих точек.

Прислать комментарий     Решение


Задача 57328  (#09.024)

Тема:   [ Неравенство треугольника (прочее) ]
Сложность: 3
Классы: 8

Докажите, что если длины сторон треугольника связаны неравенством  a2 + b2 > 5c2, то c — длина наименьшей стороны.
Прислать комментарий     Решение


Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 103]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .