ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Банки, пытаясь увеличить свою прибыль, попросили инженеров разработать сканер, который автоматически считывает номера чеков. Известно, что любой чек имеет девятизначный номер и для каждого номера чека выполняется следующее условие: (d1 +2d2 + ... +9d9) mod 11 = 0, где di равно i-й цифре номера (цифры нумеруются справа налево: d9d8d7d6d5d4d3d2d1).

Сканер, считывая номер, преобразовывает горизонтальные и вертикальные линии в символы | (ASCII-код 124) и _ (ASCII-код 95) соответственно. В результате сканирования выдается картинка, составленная из этих символов и пробелов. Пример правильного изображения цифр после сканирования приведен в примере входного файла.

К сожалению, иногда сканер допускает ошибки, и некоторые линии могут пропадать. Вы должны написать программу, которая восстанавливает исходный номер чека, считая выполненными следующие условия: 
    если отсканированное число является корректным номером чека, то это и есть исходный номер;
    испорчено не более одной цифры;
    при сканировании не появляются дополнительные линии.

Входные данные

Входной файл содержит отсканированную картинку в виде 3 строк по 27 символов в каждой. Изображение каждой цифры занимает квадрат размером 3 × 3 символа.

Выходные данные

Запишите в выходной файл либо корректный номер чека, либо строку «failure», если номер восстановить нельзя, либо строку «ambiguous», если
существует более одного решения.

Пример входного файла

   _  _     _  _ _  _  _ 
|  _| _||_||_ |_  ||_||_| 
| |_  _|  | _||_| ||_| _| 

Пример выходного файла

123456789

   Решение

Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 73871  (#20.027)

Темы:   [ Ортогональная (прямоугольная) проекция ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Произвольные многоугольники ]
[ Системы отрезков, прямых и окружностей ]
Сложность: 4+
Классы: 8,9,10

Автор: Фомин С.В.

На плоскости дано конечное множество многоугольников, каждые два из которых имеют общую точку. Докажите, что существует прямая, которая имеет общую точку с каждым из этих многоугольников.
Прислать комментарий     Решение


Задача 58075  (#20.028)

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 3
Классы: 8,9

Можно ли на плоскости расположить 1000 отрезков так, чтобы каждый отрезок обоими концами упирался строго внутрь других отрезков?
Прислать комментарий     Решение


Задача 58076  (#20.029)

Тема:   [ Наименьший или наибольший угол ]
Сложность: 4
Классы: 8,9

На плоскости даны четыре точки, не лежащие на одной прямой. Докажите, что хотя бы один из треугольников с вершинами в этих точках не является остроугольным.
Прислать комментарий     Решение


Задача 58077  (#20.030)

Тема:   [ Принцип крайнего (прочее) ]
Сложность: 4
Классы: 8,9

На плоскости дано бесконечное множество прямоугольников, вершины каждого из которых расположены в точках с координатами (0, 0), (0, m), (n, 0), (n, m), где n и m — целые положительные числа (свои для каждого прямоугольника). Докажите, что из этих прямоугольников можно выбрать два так, чтобы один содержался в другом.
Прислать комментарий     Решение


Задача 58078  (#20.030B)

Темы:   [ Принцип крайнего (прочее) ]
[ Теорема Хелли ]
Сложность: 5
Классы: 8,9,10

На плоскости дано n точек, причем любые три из них можно накрыть кругом радиуса 1. Докажите, что тогда все n точек можно накрыть кругом радиуса 1.
Прислать комментарий     Решение


Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .