ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 58]      



Задача 32801

Темы:   [ Задачи на движение ]
[ Уравнения в целых числах ]
[ НОД и НОК. Взаимная простота ]
Сложность: 3
Классы: 7,8,9

Когда Клайв поступил в математическую школу, ему подарили новые часы, на которых была ещё секундная стрелка.
Сколько раз за сутки все три стрелки на таких часах совпадут?

Прислать комментарий     Решение

Задача 32806

Тема:   [ Шахматная раскраска ]
Сложность: 3
Классы: 7,8,9

а) Из обычной шахматной доски 8 на 8 вырезали клетки с5 и g2. Можно ли то, что осталось, замостить доминошками 1 на 2?
  б) Тот же вопрос, если вырезали клетки с6 и g2.
Прислать комментарий     Решение


Задача 32818

Темы:   [ Делимость чисел. Общие свойства ]
[ Арифметическая прогрессия ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3
Классы: 7,8,9

а) Можно ли разложить 20 монет достоинством в 1, 2, 3, ..., 19, 20 мунгу по трём карманам так, чтобы в каждом кармане оказалась одинаковая сумма денег?

б) А если добавить еще один тугрик? (Как известно, один тугрик равен ста мунгу.)

Прислать комментарий     Решение

Задача 32819

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8

Фальшивомонетчик Вася изготовил четыре монеты достоинством 1, 3, 4, 7 квача, которые должны весить 1, 3, 4, 7 граммов соответственно. Но одну из этих монет он сделал некачественно – с неправильным весом. Как за два взвешивания на чашечных весах без гирек определить "неправильную" монету?
Прислать комментарий     Решение


Задача 32820

Тема:   [ Взвешивания ]
Сложность: 3
Классы: 7,8,9

Известно, что среди нескольких монет имеется ровно одна фальшивая (отличается по весу от настоящих). С помощью двух взвешиваний на чашечных весах без гирь определите, легче или тяжелее фальшивая монета настоящей (находить ее не надо), если монет
а) 100;
б) 99;
в) 98?
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .