ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 58]      



Задача 32799

Тема:   [ Задачи на движение ]
Сложность: 3-
Классы: 7,8

После того, как Клайв собрал и завел свои часы (см. задачу 32798), поставив их по дедушкиным, они стали идти в обратную сторону. Сколько раз в сутки они покажут правильное время?

Прислать комментарий     Решение

Задача 32808

Тема:   [ Теория игр (прочее) ]
Сложность: 3-
Классы: 7,8,9

Докажите, что в игре в "крестики-нолики" на поле 3*3 при правильной игре первого игрока второй игрок выиграть не сможет.
Прислать комментарий     Решение


Задача 32821

Тема:   [ Арифметика. Устный счет и т.п. ]
Сложность: 3-
Классы: 7,8,9

Фальшивомонетчик Вася стал выпускать золотые слитки. Сделав пять таких слитков, он замерил вес каждой пары. Получились величины в 110, 112, 113, 114, 115, 116, 117, 118, 120 и 121 унцию. Сколько весит каждый брусок?
Прислать комментарий     Решение


Задача 32825

Темы:   [ Турниры и турнирные таблицы ]
[ Соображения непрерывности ]
Сложность: 3-
Классы: 7,8,9

Сборная России по футболу выиграла у сборной Туниса со счетом  9 : 5.  Докажите, что по ходу матча был момент, когда сборной России оставалось забить столько голов, сколько уже забила сборная Туниса.

Прислать комментарий     Решение

Задача 32787

Темы:   [ Принцип Дирихле (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Десятичная система счисления ]
Сложность: 3
Классы: 7,8

Можно ли найти 57 различных двузначных чисел, чтобы сумма никаких двух из них не равнялась 100?
Прислать комментарий     Решение


Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 58]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .