Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 9 задач
Версия для печати
Убрать все задачи

Постройте треугольник по двум сторонам и медиане, проведённой к третьей стороне.

Вниз   Решение


Раскраска вершин графа называется правильной, если вершины одного цвета не соединены ребром. Некоторый граф правильно раскрашен в k цветов, причём его нельзя правильно раскрасить в меньшее число цветов. Докажите, что в этом графе существует путь, вдоль которого встречаются вершины всех k цветов ровно по одному разу.

ВверхВниз   Решение


В неравнобедренном треугольнике ABC точки H и M – точки пересечения высот и медиан соответственно. Через вершины A, B и C проведены прямые, перпендикулярные прямым AM, BM, CM соответственно. Докажите, что точка пересечения медиан треугольника, образованного проведёнными прямыми, лежит на прямой MH.

ВверхВниз   Решение


Точки M и N – середины боковых сторон AB и CD трапеции ABCD. Перпендикуляр, опущенный из точки M на диагональ AC, и перпендикуляр, опущенный из точки N на диагональ BD, пересекаются в точке P. Докажите, что  PA = PD.

ВверхВниз   Решение


Высота четырехугольной пирамиды SABCD проходит через точку пересечения диагоналей ее основания ABCD . Из вершин основания опущены перпендикуляры AA1 , BB1 , CC1 , DD1 на прямые SC , SD , SA и SB соответственно. Оказалось, что точки S , A1 , B1 , C1 , D1 различны и лежат на одной сфере. Докажите, что прямые AA1 , BB1 , CC1 , DD1 проходят через одну точку.

ВверхВниз   Решение


Докажите, что площадь параллелограмма произведению двух его соседних сторон на синус угла между ними, т.е.

S = ab sin$\displaystyle \gamma$,

где a и b — соседние стороны параллелограмма, $ \gamma$ — угол между ними.

ВверхВниз   Решение


В выпуклом пятиугольнике ABCDE  AB = BC,  ∠ABE + ∠DBC = ∠EBD  и   ∠AEB + ∠BDC = 180°.
Докажите, что ортоцентр треугольника BDE лежит на диагонали AC.

ВверхВниз   Решение


В выпуклом пятиугольнике проведены все диагонали. Каждая вершина и каждая точка пересечения диагоналей окрашены в синий цвет. Вася хочет перекрасить эти синие точки в красный цвет. За одну операцию ему разрешается поменять цвет всех окрашенных точек, принадлежащих либо одной из сторон либо одной из диагоналей на противоположный (синие точки становятся красными, а красные – синими). Сможет ли он добиться желаемого, выполнив какое-то количество описанных операций?

ВверхВниз   Решение


Автор: Фольклор

Прямоугольник ABCD с площадью 1 сложили по прямой так, что точка C совпала с A.
Докажите, что площадь получившегося пятиугольника меньше ¾.

Вверх   Решение

Задачи

Страница: << 1 2 [Всего задач: 9]      



Задача 36048  (#06)

Тема:   [ Задачи на движение ]
Сложность: 2+
Классы: 6,7

Пловец плывёт вверх против течения Невы. Возле Дворцового моста он потерял пустую фляжку. Проплыв еще 20 минут против течения, он заметил потерю и вернулся догонять флягу; догнал он её возле моста лейтенанта Шмидта. Какова скорость течения Невы, если расстояние между мостами равно 2 км?

Прислать комментарий     Решение

Задача 36049  (#07)

Тема:   [ Задачи на движение ]
Сложность: 2+
Классы: 6,7

Два охотника отправились одновременно навстречу друг другу из двух деревень, расстояние между которыми 18 км. Первый шёл со скоростью 5 км/ч, а второй – 4 км/ч. Первый охотник взял с собой собаку, которая бежала со скоростью 8 км/ч. Собака сразу же побежала навстречу второму охотнику, встретила его, тявкнула, повернула и с той же скоростью побежала навстречу хозяину, и так далее. Так она бегала до тех пор, пока охотники не встретились. Сколько километров она пробежала?

Прислать комментарий     Решение

Задача 36050  (#08)

Темы:   [ Задачи на движение ]
[ Задачи-шутки ]
Сложность: 2
Классы: 6,7

Андрей ведёт машину со скоростью 60 км/ч. Он хочет проезжать каждый километр на 1 минуту быстрее. На сколько ему следует увеличить скорость?

Прислать комментарий     Решение

Задача 36051  (#09)

Тема:   [ Задачи на движение ]
Сложность: 2
Классы: 6,7

Турист шел 3,5 часа, причём за каждый промежуток времени в один час он проходил ровно 5 км.
Следует ли из этого, что его средняя скорость равна 5 км/час?

Прислать комментарий     Решение

Страница: << 1 2 [Всего задач: 9]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .