ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Доказать, что из трёх положительных чисел всегда можно выбрать такие два
числа x и y, что 0 ≤ |
Страница: 1 [Всего задач: 4]
Решить систему пятнадцати уравнений с пятнадцатью неизвестными: x1x2 = x2x3 = ... = x14x15 = x15x1 = 1.
Для выпуклого четырёхугольника ABCD соблюдено условие:
AB + CD = BC + DA.
Докажите, что окружность, вписанная в
Докажите, что если квадрат числа начинается с 0,999...9 (100 девяток), то и само число начинается с 0,999...9 (100 девяток).
Дан отрезок AB. Найдите геометрическое место вершин C остроугольных треугольников ABC.
Страница: 1 [Всего задач: 4]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке