ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Варианты:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Марина купила тур в Банановую страну с 5 по 22 октября. Ввозить и вывозить бананы через границу запрещено. Банановый король в начале каждого месяца издаёт указ о ценах. Цена одного банана в местной валюте на нужные числа октября приведена в таблице:
Марина хочет ежедневно съедать по одному банану. Она любит только зелёные бананы, поэтому согласна съесть банан только в течение 4 дней после покупки. Например, банан, купленный 5 октября, Марина согласна съесть 5, 6, 7 или 8 октября. Марина может запасаться бананами, когда они подешевле. В какие дни по сколько бананов надо покупать Марине, чтобы потратить как можно меньше денег? Для любого натурального числа n существует составленное из цифр 1 и 2 число, делящееся на 2n. Докажите это. На прямой дано 50 отрезков. Докажите, что верно хотя бы одно из следующих утверждений:
В куче $n$ камней, играют двое. За ход можно взять из кучи количество камней, либо равное простому делителю текущего числа камней в куче, либо равное 1. Выигрывает взявший последний камень. При каких $n$ начинающий может играть так, чтобы всегда выигрывать, как бы ни играл его соперник? Доказать, что у всякого выпуклого многогранника найдутся две грани с одинаковым числом сторон. В клетках квадратной таблицы 4×4 расставлены знаки + и – , как показано на рисунке. Имеется 20 бусинок десяти цветов, по две бусинки каждого цвета. Их как-то разложили в 10 коробок. Известно, что можно выбрать по бусинке из каждой коробки так, что все цвета будут представлены. Докажите, что число способов такого выбора есть ненулевая степень двойки. В треугольник ABC вписана окружность ω с центром в точке I. Около треугольника AIB описана окружность Г. Окружности ω и Г пересекаются в точках X и Y. Общие касательные к окружностям ω и Г пересекаются в точке Z. Докажите, что описанные окружности треугольников ABC и XYZ, касаются. В лаборатории на полке стоят 120 внешне неразличимых пробирок, в 118 из которых находится нейтральное вещество, в одной – яд и в одной – противоядие. Пробирки случайно перемешались, и нужно найти пробирку с ядом и пробирку с противоядием. Для этого можно воспользоваться услугами внешней тестирующей лаборатории, в которую одновременно отправляют несколько смесей жидкостей из любого числа пробирок (по одной капле из пробирки), и для каждой смеси лаборатория сообщит результат: $+1$, если в смеси есть яд и нет противоядия; $-1$, если в смеси есть противоядие, но нет яда; 0 в остальных случаях. Можно ли, подготовив 19 таких смесей и послав их в лабораторию единой посылкой, по сообщенным результатам гарантированно определить, в какой пробирке яд, а в какой противоядие? По кругу расставлены 2005 натуральных чисел. |
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]
В турнире собираются принять участие 25 шахматистов. Все они играют в разную
силу, и при встрече всегда побеждает сильнейший.
Трёхчлен ax² + bx + c при всех целых x является точным квадратом. Доказать, что тогда ax² + bx + c = (dx + e)².
Неравенство
Aa(Bb + Cc) + Bb(Cc + Aa) + Cc(Aa + Bb) >
где a > 0, b > 0, c > 0 — данные числа, выполняется для всех A > 0, B > 0,
C > 0. Можно ли из отрезков a, b, c составить треугольник?
Дан треугольник A0B0C0. На его сторонах A0B0, B0C0, C0A0 взяты точки C1, A1, B1 соответственно. На сторонах A1B1, B1C1, C1A1 треугольника A1B1C1 взяты соответственно точки C2, A2, B2, и вообще, на сторонах AnBn, BnCn, CnAn, треугольника AnBnCn взяты точки Cn + 1, An + 1, Bn + 1. Известно, что и вообще,
Доказать, что треугольник ABC, образованный пересечением прямых A0A1, B0B1, C0C1, содержится в треугольнике AnBnCn при любом n.
Две окружности касаются друг друга внешним образом и третьей изнутри. Проводятся внешняя и внутренняя общие касательные к первым двум окружностям. Доказать, что внутренняя касательная делит пополам дугу, отсекаемую внешней касательной на третьей окружности.
Страница: << 1 2 3 4 5 6 7 [Всего задач: 35]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке