ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



Задача 78258

Тема:   [ Десятичная система счисления ]
Сложность: 4
Классы: 8,9,10

Доказать, что среди любых 39 последовательных натуральных чисел обязательно найдётся такое, у которого сумма цифр делится на 11.
Прислать комментарий     Решение


Задача 78265

Темы:   [ Принцип крайнего (прочее) ]
[ Числовые таблицы и их свойства ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 10,11

В клетки таблицы m×n вписаны некоторые числа. Разрешается одновременно менять знак у всех чисел некоторого столбца или некоторой строки. Доказать, что многократным повторением этой операции можно превратить данную таблицу в такую, у которой суммы чисел, стоящих в каждом столбце и каждой строке, неотрицательны.

Прислать комментарий     Решение

Задача 78271

Темы:   [ Наибольшая или наименьшая длина ]
[ Повороты на $60^\circ$ и $120^\circ$ ]
Сложность: 4
Классы: 10,11

Расстояние от фиксированной точки P плоскости до двух вершин A, B равностороннего треугольника ABC равны AP = 2; BP = 3. Определить, какое максимальное значение может иметь отрезок PC.
Прислать комментарий     Решение


Задача 78272

Темы:   [ Рекуррентные соотношения ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 10,11

Дан произвольный набор из +1 и -1 длиной 2k. Из него получается новый по следующему правилу: каждое число умножается на следующее за ним; последнее 2k-тое число умножается на первое. С новым набором из 1 и -1 проделывается то же самое и т.д. Доказать, что в конце концов получается набор, состоящий из одних единиц.
Прислать комментарий     Решение


Задача 78268

Темы:   [ Теория игр (прочее) ]
[ Выигрышные и проигрышные позиции ]
Сложность: 4+
Классы: 8,9,10

Коля и Петя делят 2n + 1 орехов, n$ \ge$2, причём каждый хочет получать возможно больше. Предполагаются три способа дележа (каждый проходит в три этапа). 1-й этап: Петя делит все орехи на две части, в каждой не меньше двух орехов. 2-й этап: Коля делит каждую часть снова на две, в каждой не меньше одного ореха. 1-й и 2-й этапы общие для всех трёх способов. 3-й этап: При первом способе Коля берёт большую и меньшую части; При втором способе Коля берёт обе средние части; При третьем способе Коля берёт либо большую и меньшую части, либо обе средние части, но за право выбора отдаёт Пете один орех. Определить, какой способ самый выгодный для Коли и какой наименее выгоден для него.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 35]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .