ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам | Поиск |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



Задача 78483

Тема:   [ Алгебраические неравенства (прочее) ]
Сложность: 3+
Классы: 9,10

a, b, c – такие три числа, что  abc > 0  и  a + b + c > 0.  Доказать, что  an + bn + cn > 0  при любом натуральном n.

Прислать комментарий     Решение

Задача 78486

Темы:   [ Четность и нечетность ]
[ Ортогональная (прямоугольная) проекция ]
Сложность: 3+
Классы: 11

Дана система из 25 различных отрезков с общим началом в данной точке A и с концами на прямой l, не проходящей через эту точку. Доказать, что не существует замкнутой 25-звенной ломаной, для каждого звена которой нашёлся бы отрезок системы, равный и параллельный этому звену.

Прислать комментарий     Решение

Задача 78491

Тема:   [ Арифметика остатков (прочее) ]
Сложность: 3+
Классы: 8,9,10

Какое наибольшее количество чисел можно выбрать из набора 1, 2, ..., 1963 так, чтобы сумма каждых двух выбранных чисел делилась на 26?

Прислать комментарий     Решение

Задача 78494

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 8,9

В таблицу 8×8 вписаны все целые числа от 1 до 64. Доказать, что при этом найдутся два соседних числа, разность между которыми не меньше 5. (Соседними называются числа, стоящие в клетках, имеющих общую сторону.)

Прислать комментарий     Решение

Задача 78501

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип Дирихле (прочее) ]
Сложность: 3+
Классы: 9,10

В таблицу 9×9 вписаны все целые числа от 1 до 81. Доказать, что найдутся два соседних числа, разность между которыми не меньше 6.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .