ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



Задача 78609

Темы:   [ Разрезания на части, обладающие специальными свойствами ]
[ Индукция в геометрии ]
[ Прямоугольники и квадраты. Признаки и свойства ]
[ Принцип Дирихле (конечное число точек, прямых и т. д.) ]
Сложность: 4+
Классы: 8,9,10

В квадрате расположено K точек (K > 2). На какое наименьшее число треугольников нужно разбить квадрат, чтобы в каждом треугольнике находилось не более одной точки?
Прислать комментарий     Решение


Задача 78628

Темы:   [ Числовые таблицы и их свойства ]
[ НОД и НОК. Взаимная простота ]
[ Перестановки и подстановки (прочее) ]
[ Принцип крайнего (прочее) ]
Сложность: 4+
Классы: 9,10,11

Дана таблица n×n клеток и такие натуральные числа k и  m > k,  что m и  n – k  взаимно просты. Таблица заполняется следующим образом: пусть в некоторой строчке записаны числа  a1, ..., ak, ak+1, ..., am, am+1, ..., an.  Тогда в следующей строчке записываются те же числа, но в таком порядке:  am+1, ..., an, ak+1, ..., am, a1, ..., ak.  В первую строчку записываются (по порядку) числа  1, 2, ..., n.  Доказать, что после заполнения таблицы в каждом столбце будут написаны все числа от 1 до n.

Прислать комментарий     Решение

Задача 78630

Темы:   [ Покрытия ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Метод координат в пространстве (прочее) ]
Сложность: 5-
Классы: 10,11

В восьми данных точках пространства установлено по прожектору, каждый из которых может осветить в пространстве октант (трёхгранный угол со взаимно-перпендикулярными сторонами). Доказать, что можно повернуть прожекторы так, чтобы они осветили все пространство.
Прислать комментарий     Решение


Задача 78631

Темы:   [ Десятичная система счисления ]
[ Процессы и операции ]
[ Доказательство от противного ]
[ Индукция (прочее) ]
Сложность: 5-
Классы: 9,10,11

Рассматриваются всевозможные n-значные числа, составленные из цифр 1, 2 и 3. В конце каждого из этих чисел приписывается цифра 1, 2 или 3 так, что к двум числам, у которых во всех разрядах стоят разные цифры, приписываются разные цифры. Доказать, что найдется n-значное число, в записи которого участвует лишь одна единица и к которому приписывается единица.
Прислать комментарий     Решение


Задача 78626

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 11 ]
Сложность: 5-
Классы: 8,9,10

Задано такое натуральное число A, что для любого натурального N, делящегося на A, число тоже делится на A. ( – число, состоящее из тех же цифр, что и N, но записанных в обратном порядке; например,   = 7691,  = 54).  Доказать, что A является делителем числа 99.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 31]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .