ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 78623  (#1)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Четность и нечетность ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10

Число Y получается из натурального числа X некоторой перестановкой его цифр. Известно, что  X + Y = 10200.  Доказать, что X делится на 50.

Прислать комментарий     Решение

Задача 78624  (#2)

Темы:   [ Примеры и контрпримеры. Конструкции ]
[ Индукция (прочее) ]
[ Целая и дробная части. Принцип Архимеда ]
Сложность: 4
Классы: 9,10,11

Дана последовательность целых положительных чисел X1, X2...Xn, все элементы которой не превосходят некоторого числа M. Известно, что при всех k > 2 Xk = | Xk - 1 - Xk - 2|. Какой может быть максимальная длина этой последовательности?
Прислать комментарий     Решение


Задача 78625  (#3)

Темы:   [ Метрические соотношения (прочее) ]
[ Правильный (равносторонний) треугольник ]
[ Прямоугольные треугольники (прочее) ]
Сложность: 4-
Классы: 10,11

На каждой стороне треугольника ABC построено по квадрату во внешнюю сторону (пифагоровы штаны). Оказалось, что внешние вершины всех квадратов лежат на одной окружности. Доказать, что треугольник ABC — равнобедренный.
Прислать комментарий     Решение


Задача 78626  (#4)

Темы:   [ Десятичная система счисления ]
[ Делимость чисел. Общие свойства ]
[ Признаки делимости на 3 и 9 ]
[ Признаки делимости на 11 ]
Сложность: 5-
Классы: 8,9,10

Задано такое натуральное число A, что для любого натурального N, делящегося на A, число тоже делится на A. ( – число, состоящее из тех же цифр, что и N, но записанных в обратном порядке; например,   = 7691,  = 54).  Доказать, что A является делителем числа 99.

Прислать комментарий     Решение

Задача 78627  (#5)

Темы:   [ Разложение в произведение транспозиций и циклов ]
[ Процессы и операции ]
Сложность: 4-
Классы: 8,9,10

Испанский король решил перевесить по-своему портреты своих предшественников в круглой башне замка. Однако он хочет, чтобы за один раз меняли местами только два портрета, висящие рядом, причём это не должны быть портреты двух королей, один из которых царствовал сразу после другого. Кроме того, ему важно лишь взаимное расположение портретов, и два расположения, отличающиеся поворотом круга, он считает одинаковыми. Доказать, что как бы сначала ни висели портреты, король может по этим правилам добиться любого нового их расположения.

Прислать комментарий     Решение

Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .