Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]
|
|
Сложность: 4+ Классы: 8,9,10
|
Для каждого целого неотрицательного числа i определим число M(i) следующим образом: запишем число i в двоичной форме; если число единиц в этой записи чётно, то M(i) = 0, а если нечётно – то 1 (первые члены этой последовательности: 0, 1, 1, 0, 1, 0, 0, 1, ... ).
а) Рассмотрим конечную последовательность M(0), M(1), ... , M(1000). Докажите, что число членов этой последовательности, равных своему правому соседу, не меньше 320.
б) Рассмотрим конечную последовательность M(0), M(1), ..., M(1000000). Докажите, что число таких членов последовательности, что M(i) = M(i + 7), не меньше 450000.
|
|
Сложность: 5- Классы: 9,10
|
Дана функция , где трёхчлены x² + ax + b и x² + cx + d не имеют общих корней. Докажите, что следующие два утверждения равносильны:
1) найдётся числовой интервал, свободный от значений функции;
2) f(x) представима в виде: f(x) = f1(f2(...fn–1(fn(x))...)), где каждая из функций fi(x) есть функция одного из видов:
kix + bi, x–1, x².
|
|
Сложность: 5+ Классы: 9,10,11
|
Ладья, делая ходы по вертикали и горизонтали на соседнее поле, за 64 хода
обошла все поля шахматной доски 8×8 и вернулась на исходное поле. Докажите, что число ходов по вертикали не равно числу ходов по горизонтали.
Страница:
<< 2 3 4 5 6 7 8 [Всего задач: 38]