ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 6]      



Задача 98438  (#1)

Темы:   [ Объем тетраэдра и пирамиды ]
[ Боковая поверхность тетраэдра и пирамиды ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 10,11

В море плавает предмет, имеющий форму выпуклого многогранника.
Может ли случиться, что 90% его объёма находится ниже уровня воды и при этом больше половины его поверхности находится выше уровня воды?

Прислать комментарий     Решение

Задача 98439  (#2)

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Четыре точки, лежащие на одной окружности ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 3+
Классы: 10,11

Четырёхугольник ABCD вписан в окружность с центром O. Описанные окружности треугольников ABO и CDO, пересеклись второй раз в точке F. Докажите, что описанная окружность треугольника AFD проходит через точку E пересечения отрезков AC и BD.

Прислать комментарий     Решение

Задача 98440  (#3)

Темы:   [ НОД и НОК. Взаимная простота ]
[ Уравнения в целых числах ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
[ Неравенство Коши ]
Сложность: 3+
Классы: 7,8,9

Найдите все пары целых чисел  (x, y),  для которых числа  x³ + y  и  x + y³  делятся на  x² + y².

Прислать комментарий     Решение

Задача 98441  (#4)

Темы:   [ Комбинаторика (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 8,9,10

2n радиусов разделили круг на 2n равных секторов: n синих и n красных, чередующихся в произвольном порядке. В синие сектора, начиная с некоторого, записывают против хода часовой стрелки числа от 1 до n. В красные сектора, начиная с некоторого, записывают те же числа, но по ходу часовой стрелки. Докажите, что найдётся полукруг, в котором записаны все числа от 1 до n.

Прислать комментарий     Решение

Задача 98442  (#5)

Темы:   [ Двоичная система счисления ]
[ Классическая комбинаторика (прочее) ]
Сложность: 4+
Классы: 8,9,10

Для каждого целого неотрицательного числа i определим число M(i) следующим образом: запишем число i в двоичной форме; если число единиц в этой записи чётно, то M(i) = 0, а если нечётно – то 1 (первые члены этой последовательности: 0, 1, 1, 0, 1, 0, 0, 1, ... ).
  а) Рассмотрим конечную последовательность  M(0), M(1), ... , M(1000).  Докажите, что число членов этой последовательности, равных своему правому соседу, не меньше 320.
  б) Рассмотрим конечную последовательность  M(0), M(1), ..., M(1000000).  Докажите, что число таких членов последовательности, что  M(i) = M(i + 7),  не меньше 450000.

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 6]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .