Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Найти сумму

13 + 33 + 53 + ... + (2n - 1)3.

Вниз   Решение


На каждой стороне параллелограмма выбрано по точке (выбранные точки отличны от вершин параллелограмма). Точки, лежащие на соседних (имеющих общую вершину) сторонах, соединены отрезками. Докажите, что центры описанных окружностей четырёх получившихся треугольников – вершины параллелограмма.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



Задача 98611

Темы:   [ Неравенства с описанными, вписанными и вневписанными окружностями ]
[ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Теорема синусов ]
[ Неравенства для углов треугольника ]
Сложность: 3+
Классы: 10,11

В треугольнике ABC взяли точку M так, что что радиусы описанных окружностей треугольников AMC, BMC и BMA не меньше радиуса описанной окружности треугольника ABC. Докажите, что все четыре радиуса равны.

Прислать комментарий     Решение

Задача 98614

Темы:   [ Целочисленные и целозначные многочлены ]
[ Теорема Виета ]
Сложность: 3+
Классы: 8,9

Вася пишет на доске квадратное уравнение  ax² + bx + c = 0  с натуральными коэффициентами a, b, c. После этого Петя, если хочет, может заменить один или два знака "+" на "–". Если у получившегося уравнения оба корня целые, то выигрывает Вася, если же корней нет или хотя бы один из них нецелый – Петя. Может ли Вася подобрать коэффициенты уравнения так, чтобы наверняка выиграть у Пети?

Прислать комментарий     Решение

Задача 98615

Темы:   [ Радиусы вписанной, описанной и вневписанной окружности (прочее) ]
[ Неравенства для элементов треугольника (прочее) ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. В нём R – радиус описанной окружности, r – радиус вписанной окружности, a – длина наибольшей стороны, h – длина наименьшей высоты. Докажите, что  R/r > a/h.

Прислать комментарий     Решение

Задача 98620

Темы:   [ Сфера, вписанная в тетраэдр ]
[ Сфера, описанная около тетраэдра ]
[ Геометрические неравенства (прочее) ]
Сложность: 3+
Классы: 10,11

Дана треугольная пирамида ABCD. В ней R – радиус описанной сферы, r – радиус вписанной сферы, a – длина наибольшего ребра, h – длина наименьшей высоты (на какую-то грань). Докажите, что  R/r > a/h.

Прислать комментарий     Решение

Задача 98622

Темы:   [ Куб ]
[ Наглядная геометрия в пространстве ]
[ Сумма углов треугольника. Теорема о внешнем угле. ]
Сложность: 3+
Классы: 10,11

Можно ли поверхность куба оклеить без пропусков и наложений тремя треугольниками?

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 41]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .