ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
года:
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 393]      



Задача 116058

Темы:   [ Признаки делимости на 3 и 9 ]
[ Простые числа и их свойства ]
Сложность: 3+
Классы: 6,7

В справочнике "Магия для чайников" написано:
  Замените в слове ЗЕМЛЕТРЯСЕНИЕ одинаковые буквы на одинаковые цифры, а разные – на разные.
  Если полученное число окажется простым, случится настоящее землетрясение.

Возможно ли таким образом устроить землетрясение?

Прислать комментарий     Решение

Задача 116059

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 3+
Классы: 6,7

Числа от 1 до 16 расставлены в таблице 4×4. В каждой строке, в каждом столбце и на каждой диагонали (включая диагонали из одной клетки) отметили самое большое из стоящих в ней чисел (одно число может быть отмечено несколько раз). Могли ли оказаться отмечены
  а) все числа, кроме, быть может, двух?
  б) все числа, кроме, быть может, одного?
  в) все числа?

Прислать комментарий     Решение

Задача 116065

Темы:   [ Шахматная раскраска ]
[ Боковая поверхность параллелепипеда ]
Сложность: 3+
Классы: 6,7

Деревянный брусок тремя распилами распилили на восемь меньших брусков. На рисунке у семи брусков указана их площадь поверхности.
Какова площадь поверхности невидимого бруска?




Прислать комментарий     Решение

Задача 116607

Темы:   [ Ребусы ]
[ Задачи с неравенствами. Разбор случаев ]
[ Оценка + пример ]
Сложность: 3+
Классы: 6,7

Замените в равенстве   ПИРОГ = КУСОК + КУСОК + КУСОК + ... + КУСОК   одинаковые буквы одинаковыми цифрами, а разные – разными так, чтобы равенство было верным, а количество "кусков пирога" было бы наибольшим из возможных.

Прислать комментарий     Решение

Задача 116612

Темы:   [ Обыкновенные дроби ]
[ Перебор случаев ]
[ Математическая логика (прочее) ]
Сложность: 3+
Классы: 6,7

Вася написал верное утверждение:
  "В этой фразе 1/3 всех цифр – цифры 3, а 1/2 всех цифр – цифры 1".
А Коля написал фразу:
  "В этой фразе 1/... всех цифр – цифры *, доли цифр * и * одинаковы и равны 1/..., а доля всех остальных цифр составляет 1/...".
Вставьте вместо звёздочек три разные цифры, а вместо многоточий – три разных числа так, чтобы получилось верное утверждение.

Прислать комментарий     Решение

Страница: << 57 58 59 60 61 62 63 >> [Всего задач: 393]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .