|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи Алёша написал на доске пять целых чисел – коэффициенты и корни квадратного трёхчлена. Боря стёр одно из них. Остались числа 2, 3, 4, –5. Восстановите стёртое число. На плоскости даны 25 точек; известно, что из любых трёх точек можно выбрать две, расстояние между которыми меньше 1. Доказать, что среди данных точек найдутся 13, лежащие в круге радиуса 1. |
Страница: << 1 2 [Всего задач: 10]
Может ли произведение двух последовательных натуральных чисел равняться произведению двух последовательных чётных чисел?
Зачеркните все 13 точек на рисунке пятью отрезками, не отрывая карандаша от бумаги и не проводя никакую линию дважды.
(Пары диаметрально противоположных вершин куба: A и G, B и H, C и E, D и F.)
(В решении достаточно написать четыре тройки вершин, в которые последовательно стреляют охотники.)
Страница: << 1 2 [Всего задач: 10] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|