Страница: 1
2 >> [Всего задач: 6]
|
|
Сложность: 2+ Классы: 7,8,9
|
Существует ли невыпуклый пятиугольник, никакие две из пяти диагоналей
которого не имеют общих точек (кроме вершин)?
|
|
Сложность: 3+ Классы: 7,8,9
|
Докажите, что уравнение x² + y² + z² = x³ + y³ + z³ имеет бесконечное число решений в целых числах x, y, z.
|
|
Сложность: 3+ Классы: 7,8,9
|
У Коли есть отрезок длины
k, а у Лёвы — отрезок длины
l. Сначала Коля
делит свой отрезок на три части, а потом Лёва делит на три части свой
отрезок. Если из получившихся шести отрезков можно сложить два треугольника,
то выигрывает Лёва, а если нет — Коля. Кто из играющих, в зависимости от
отношения
k/
l, может обеспечить себе победу, и как ему следует играть?
|
|
Сложность: 4- Классы: 8,9,10
|
Две окружности пересекаются в точках A и B. В точке A к обеим проведены касательные, пересекающие окружности в точках M и N. Прямые BM и BN пересекают окружности еще раз в точках P и Q (P – на прямой BM, Q – на прямой BN). Докажите, что отрезки MP и NQ равны.
|
|
Сложность: 4 Классы: 8,9,10
|
Найдите наибольшее натуральное число, не оканчивающееся нулем, которое при
вычеркивании одной (не первой) цифры уменьшается в целое число раз.
Страница: 1
2 >> [Всего задач: 6]