Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 56]
Задача
109833
(#05.5.9.4)
|
|
Сложность: 5- Классы: 8,9,10
|
На столе лежат 365 карточек, на обратной стороне которых написаны различные числа. За один рубль Вася может выбрать три карточки и попросить Петю положить их слева направо так, чтобы числа на карточках располагались в порядке возрастания. Может ли Вася, потратив 2000 рублей, с гарантией выложить все 365 карточек на стол слева направо так, чтобы числа на них располагались в порядке возрастания?
Задача
109834
(#05.5.9.5)
|
|
Сложность: 5- Классы: 9,10,11
|
Десять попарно различных ненулевых чисел таковы, что для каждых двух из них либо сумма этих чисел, либо их произведение – рациональное число.
Докажите, что квадраты всех чисел рациональны.
Задача
109835
(#05.5.9.6)
|
|
Сложность: 5+ Классы: 9,10,11
|
Сколькими способами числа 20, 21, 2², ..., 22005 можно разбить на два непустых множества A и B так, чтобы уравнение x² – S(A)x + S(B) = 0, где S(M) – сумма чисел множества M, имело целый корень?
Задача
108225
(#05.5.9.7)
|
|
Сложность: 5- Классы: 8,9
|
В остроугольном треугольнике проведены высоты AA' и BB'. На дуге ACB описанной окружности треугольника ABC выбрана точка D. Пусть прямые AA' и BD пересекаются в точке P, а прямые BB' и AD пересекаются в точке Q. Докажите, что прямая A'B' проходит через середину отрезка PQ.
Задача
109837
(#05.5.9.8)
|
|
Сложность: 5 Классы: 8,9,10
|
За круглым столом сидят 100 представителей 50 стран, по двое от каждой страны.
Докажите, что их можно разбить на две группы таким образом, что в каждой группе будет по одному представителю от
каждой страны, и каждый человек находился в одной группе не более чем с одним своим соседом.
Страница:
<< 5 6 7 8
9 10 11 >> [Всего задач: 56]