ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

В четырёх заданных точках на плоскости расположены прожекторы, каждый из которых может освещать прямой угол. Стороны этих углов могут быть направлены на север, юг, запад или восток. Доказать, что эти прожекторы можно направить так, что они осветят всю плоскость.

Вниз   Решение


Докажите, что у четырёхугольника, описанного около окружности, суммы противоположных сторон равны.

Вверх   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



Задача 110182  (#05.4.10.5)

Темы:   [ Арифметическая прогрессия ]
[ Делимость чисел. Общие свойства ]
[ НОД и НОК. Взаимная простота ]
Сложность: 4-
Классы: 9,10

Арифметическая прогрессия a1, a2, ..., состоящая из натуральных чисел, такова, что при любом n произведение anan+31 делится на 2005.
Можно ли утверждать, что все члены прогрессии делятся на 2005?

Прислать комментарий     Решение

Задача 110188  (#05.4.10.6)

Темы:   [ Свойства симметрий и осей симметрии ]
[ Трапеции (прочее) ]
[ Признаки подобия ]
Сложность: 4-
Классы: 8,9

Каждую вершину трапеции отразили симметрично относительно диагонали, не содержащей эту вершину.
Докажите, что если получившиеся точки образуют четырёхугольник, то он также является трапецией.

Прислать комментарий     Решение

Задача 110183  (#05.4.10.7)

Темы:   [ Уравнения в целых числах ]
[ Монотонность и ограниченность ]
[ Арифметика остатков (прочее) ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 4+
Классы: 8,9,10

Найдите все такие пары  (a, b)  натуральных чисел, что при любом натуральном n число  an + bn  является точной (n+1)-й степенью.

Прислать комментарий     Решение

Задача 110184  (#05.4.10.8)

Темы:   [ Геометрия на клетчатой бумаге ]
[ Наименьшее или наибольшее расстояние (длина) ]
[ Выпуклая оболочка и опорные прямые (плоскости) ]
[ Перенос помогает решить задачу ]
[ Четность и нечетность ]
Сложность: 4+
Классы: 9,10,11

На клетчатой бумаге нарисован прямоугольник, стороны которого образуют углы в 45° с линиями сетки, а вершины не лежат на линиях сетки.
Может ли каждую сторону прямоугольника пересекать нечётное число линий сетки?

Прислать комментарий     Решение

Задача 110173  (#05.4.11.1)

Темы:   [ Тригонометрические уравнения ]
[ Монотонность и ограниченность ]
[ Тригонометрические неравенства ]
Сложность: 3+
Классы: 9,10,11

Найдите все пары чисел x,y (0;) , удовлетворяющие равенству sin x+ sin y= sin(xy) .
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 32]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .