ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Версия для печати
Убрать все задачи а) Докажите, что существует проективное преобразование, которое
данную окружность переводит в окружность, а данную точку, лежащую
внутри окружности, переводит в центр образа.
Попробуйте расшифровать отрывок из книги "Алиса в Зазеркалье": " — БЕРПИ Э ЙДЕМГОКВЭЫ БИБЕО-ЖАКЙПЧ ЗВЕЛЕ, — ЗБИСИВ ФИВМИУ-КЕВМИУ ПЕЛЕВЧЖЕ ДГОСГАМОВЧЖЕ, — ЕЖЕ ЕСЖИЬИОМ МЕВЧБЕ МЕ, ЬМЕ Э ЦЕЬЙ, ЬМЕКЮ ЕЖЕ ЕСЖИЬИВЕ, — ЖА КЕВЧФО, ЖА ТОЖЧФО". Текст зашифрован так: десять букв ("а", "е", "и", "й", "о", "у", "ы", "э", "ю", "я") разбиты на пары, и каждая из этих букв в тексте заменена второй из пары. Все остальные буквы точно так же разбиты на пары. |
Страница: 1 [Всего задач: 5]
У Алёши есть пирожные, разложенные в несколько коробок. Алёша записал, сколько пирожных в каждой коробке. Серёжа взял по одному пирожному из каждой коробки и положил их на первый поднос. Затем он снова взял по одному пирожному из каждой непустой коробки и положил их на второй поднос – и так далее, пока все пирожные не оказались разложенными по подносам. После этого Серёжа записал, сколько пирожных на каждом подносе. Докажите, что количество различных чисел среди записанных Алёшей равно количеству различных чисел среди записанных Серёжей.
Решите систему уравнений (n > 2) x1 – x2 = 1.
В окружность радиуса 2 вписан тридцатиугольник A1A2...A30. Докажите, что на дугах A1A2, A2A3, ..., A30A1 можно отметить по одной точке (B1, B2, ..., B30 соответственно) так, чтобы площадь шестидесятиугольника A1B1A2B2...A30B30 численно равнялась периметру тридцатиугольника A1A2...A30.
Существует ли арифметическая прогрессия из пяти различных натуральных чисел, произведение которых есть точная 2008-я степень натурального числа?
На клетчатом листе бумаги нарисованы несколько прямоугольников, их стороны идут по сторонам клеток. Каждый прямоугольник состоит из нечётного числа клеток, и никакие два прямоугольника не содержат общих клеток. Докажите, что эти прямоугольники можно раскрасить в четыре цвета так, чтобы у прямоугольников одного цвета не было общих точек границы.
Страница: 1 [Всего задач: 5]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке