ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Классы:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Квадратный трёхчлен f(x) = ax2 + bx + c принимает в точках 1/a и c значения разных знаков.
С помощью циркуля и линейки впишите ромб в данный параллелограмм так, чтобы стороны ромба были параллельны диагоналям параллелограмма, а вершины ромба лежали бы на сторонах параллелограмма.
Какие цифровые корни (см. задачу 60794) бывают у полных квадратов и полных кубов?
Докажите, что если две биссектрисы треугольника равны, то он равнобедренный.
|
Страница: 1 2 3 >> [Всего задач: 12]
Биссектриса угла B и биссектриса внешнего угла D прямоугольника
ABCD пересекают сторону AD и прямую AB в точках M и
K соответственно.
B равнобедренном треугольнике ABС на боковой стороне BС отмечена точка M так, что отрезок MС равен высоте треугольника, проведённой к этой стороне, а на боковой стороне AB отмечена точка K так, что угол KMС – прямой. Hайдите угол ACK.
Из листа бумаги в клетку вырезали квадрат 2×2.
Прямая a пересекает плоскость α. Известно, что в этой плоскости найдутся 2011 прямых, равноудаленных от a и не пересекающих a.
B трапеции ABCD AB = BC = CD, CH – высота. Докажите, что перпендикуляр, опущенный из H на AC, проходит через середину BD.
Страница: 1 2 3 >> [Всего задач: 12]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке