|
ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
|
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
Версия для печати
Убрать все задачи В выпуклом четырёхугольнике все стороны и все углы попарно различны. Докажите, что при любом x выполняется неравенство x(x + 1)(x + 2)(x + 3) ≥ –1. Найти геометрическое место четвёртых вершин прямоугольников, три вершины которых лежат на двух данных концентрических окружностях, а стороны параллельны двум данным прямым. |
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39]
Второклассники Коля, Вася, Миша, Стёпа и Гриша по очереди верно решили пять примеров из таблицы умножения. Каждый следующий мальчик получил ответ в полтора раза больше предыдущего. Какие числа умножал Стёпа?
Все жители острова либо рыцари и говорят только правду, либо лжецы и всегда лгут. Путешественник встретил пятерых островитян. На его вопрос: "Сколько среди вас рыцарей?" первый ответил: "Ни одного!", а двое других ответили: "Один". Что ответили остальные?
Шейх разложил свои сокровища по девяти мешкам: в первый мешок 1 кг, во второй – 2 кг, в третий – 3 кг, и так далее, в девятый – 9 кг. Коварный визирь украл часть сокровищ из одного мешка. Как за два взвешивания на чашечных весах без гирь шейху определить, из какого именно?
Из спичек выложено неверное равенство (см. рисунок). Покажите, как переложить одну спичку, чтобы получилось равенство, в котором значения левой и правой частей различаются меньше, чем на 0,1.
На доске были записаны числа 3, 9 и 15. Разрешалось сложить два записанных числа, вычесть из этой суммы третье, а результат записать на доску вместо того числа, которое вычиталось. После многократного выполнения такой операции на доске оказались три числа, наименьшее из которых было 2013. Каковы были два остальных числа?
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 39] |
|||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
|