Страница: 1
2 >> [Всего задач: 6]
Задача
64713
(#1)
|
|
Сложность: 3 Классы: 8,9,10
|
Все коэффициенты квадратного трёхчлена – нечётные целые числа. Докажите, что у него нет корней вида 1/n, где n – натуральное число.
Задача
64714
(#2)
|
|
Сложность: 4- Классы: 8,9,10
|
В магазине в ряд висят 21 белая и 21 фиолетовая рубашка. Найдите такое минимальное k, что при любом изначальном порядке рубашек можно снять k белых и k фиолетовых рубашек так, чтобы оставшиеся белые рубашки висели подряд и оставшиеся фиолетовые рубашки тоже висели подряд.
Задача
64715
(#3)
|
|
Сложность: 4- Классы: 8,9,10
|
Дано n палочек. Из любых трёх можно сложить тупоугольный треугольник. Каково наибольшее возможное значение n?
Задача
64653
(#4)
|
|
Сложность: 4- Классы: 8,9
|
На квадратном столе лежит квадратная скатерть так, что ни один угол стола не закрыт, но с каждой стороны стола свисает треугольный кусок скатерти. Известно, что какие-то два соседних куска равны. Докажите, что и два других куска тоже равны. (Скатерть нигде не накладывается сама на себя, её размеры могут отличаться от размеров стола.)
Задача
64717
(#5)
|
|
Сложность: 4+ Классы: 9,10
|
Радикалом натурального числа N (обозначается rad(N)) называется произведение всех простых делителей числа N, взятых по одному разу. Например,
rad(120) = 2·3·5 = 30. Существует ли такая тройка попарно взаимно простых натуральных чисел A, B, C, что A + B = C и C > 1000 rad(ABC)?
Страница: 1
2 >> [Всего задач: 6]