Страница: 1 2 >> [Всего задач: 8]
Задача
64777
(#11.1)
|
|
Сложность: 3 Классы: 10,11
|
Существует ли такое положительное число α, что при всех действительных x верно неравенство |cos x| + |cos αx| > sin x + sin αx?
Задача
64778
(#11.2)
|
|
Сложность: 4 Классы: 10,11
|
Петя и Вася играют в игру на клетчатой доске n×n (где n > 1). Изначально вся доска белая, за исключением угловой клетки – она чёрная, и в ней стоит ладья. Игроки ходят по очереди. Каждым ходом игрок передвигает ладью по горизонтали или вертикали, при этом все клетки, через которые ладья перемещается (включая ту, в которую она попадает), перекрашиваются в чёрный цвет. Ладья не должна передвигаться через чёрные клетки или останавливаться на них. Проигрывает тот, кто не может сделать ход; первым ходит Петя. Кто выиграет при правильной игре?
Задача
64779
(#11.3)
|
|
Сложность: 4- Классы: 10,11
|
Положительные рациональные числа a и b записаны в виде десятичных дробей, у каждой из которых минимальный период состоит из 30 цифр. У десятичной записи числа a – b длина минимального периода равна 15. При каком наименьшем натуральном k длина минимального периода десятичной записи числа a + kb может также оказаться равной 15?
Задача
64772
(#11.4)
|
|
Сложность: 4+ Классы: 9,10,11
|
Треугольник ABC (AB > BC) вписан в окружность Ω. На сторонах AB и BC выбраны точки M и N соответственно так, что AM = CN. Прямые MN и AC пересекаются в точке K. Пусть P – центр вписанной окружности треугольника AMK, а Q – центр вневписанной окружности треугольника CNK, касающейся стороны CN. Докажите, что середина дуги ABC окружности Ω равноудалена от точек P и Q.
Задача
64781
(#11.5)
|
|
Сложность: 3+ Классы: 10,11
|
Натуральное число n назовём хорошим, если каждый его натуральный делитель, увеличенный на 1, является делителем числа n + 1.
Найдите все хорошие натуральные числа.
Страница: 1 2 >> [Всего задач: 8]