ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



Задача 64851

Темы:   [ Десятичная система счисления ]
[ Деление с остатком ]
[ Индукция (прочее) ]
Сложность: 4
Классы: 8,9

Назовём натуральное число ровным, если в его записи все цифры одинаковы (например: 4, 111, 999999).
Докажите, что любое n-значное число можно представить как сумму не более чем  n + 1  ровных чисел.

Прислать комментарий     Решение

Задача 64854

Темы:   [ Вписанные и описанные окружности ]
[ Четыре точки, лежащие на одной окружности ]
[ Произведение длин отрезков хорд и длин отрезков секущих ]
Сложность: 4
Классы: 9,10

Вписанная окружность треугольника ABC касается сторон BC, CA, ABв точках A', B', C' соответственно. Прямые AA', BB' и CC' пересекаются в точке G. Описанная окружность треугольника GA'B', вторично пересекает прямые AC и BC в точках CA и CB. Аналогично определяются точки AB, AC, BC, BA. Докажите, что точки AB, AC, BC, BA, CA, CB лежат на одной окружности.

Прислать комментарий     Решение

Задача 64855

Темы:   [ Мощность множества. Взаимно-однозначные отображения ]
[ Разбиения на пары и группы; биекции ]
Сложность: 4
Классы: 7,8,9,10,11

Петя подсчитал количество всех возможных m-буквенных слов, в записи которых могут использоваться только четыре буквы T, O, W и N, причём в каждом слове букв T и O поровну. Вася подсчитал количество всех возможных 2m-буквенных слов, в записи которых могут использоваться только две буквы T и O, и в каждом слове этих букв поровну. У кого слов получилось больше? (Слово – это любая последовательность букв.)

Прислать комментарий     Решение

Задача 64856

Темы:   [ Шестиугольники ]
[ Векторы помогают решить задачу ]
[ Вспомогательные подобные треугольники ]
Сложность: 4
Классы: 9,10,11

На столе лежал проволочный треугольник с углами x°, y°, z°. Хулиган Коля согнул каждую сторону треугольника на один градус, в результате чего получился невыпуклый шестиугольник c внутренними углами  (x – 1)°,  181°,  (y – 1)°,  181°, (z – 1)°,  181°.  Докажите, что точки сгиба делили стороны исходного треугольника в одном и том же отношении.

Прислать комментарий     Решение

Задача 65162

Темы:   [ Числовые таблицы и их свойства ]
[ Принцип крайнего (прочее) ]
[ Суммы числовых последовательностей и ряды разностей ]
[ Примеры и контрпримеры. Конструкции ]
Сложность: 4
Классы: 8,9,10,11

а) В таблицу 2×n (где  n > 2)  вписаны числа. Суммы во всех столбцах различны. Докажите, что можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны.
б) В таблицу 10×10 вписаны числа. Суммы во всех столбцах различны. Всегда ли можно переставить числа в таблице так, чтобы суммы в столбцах были различны и суммы в строках были различны?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 42]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .