ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Версия для печати
Убрать все задачи Точка D лежит на основании AC равнобедренного
треугольника ABC. Докажите, что радиусы описанных окружностей
треугольников ABD и CBD равны.
Четырехугольник ABCD вписанный. Докажите, что
точка Микеля для прямых, содержащих его стороны, лежит на
отрезке, соединяющем точки пересечения продолжений сторон.
Выразите площадь треугольника ABC через длину
стороны BC и величины углов B и C.
Прямая, проходящая через общую точку A двух окружностей, пересекает вторично эти окружности в точках B и C соответственно. Расстояние между проекциями центров окружностей на эту прямую равно 12. Найдите BC, если известно, что точка A лежит на отрезке BC. Четыре прямые образуют четыре треугольника.
Постройте равнобедренный треугольник по основанию и радиусу описанной окружности.
Дан треугольник ABC. На прямых AB, BC и CA взяты точки C1, A1, и B1 соответственно, отличные от вершин треугольника. Докажите, что окружности, описанные около треугольников AB1C1, A1B1C, A1BC1, пересекаются в одной точке.
|
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]
Верно ли, что любое натуральное число можно умножить на одно из чисел 1, 2, 3, 4 или 5 так, чтобы результат начинался на цифру 1?
Геометрическая прогрессия состоит из 37 натуральных чисел. Первый и последний члены прогрессии взаимно просты.
По кругу стоят мальчики и девочки (есть и те, и другие), всего 20 детей. Известно, что у каждого мальчика сосед по часовой стрелке – ребёнок в синей футболке, а у каждой девочки сосед против часовой стрелки – ребёнок в красной футболке. Можно ли однозначно установить, сколько в круге мальчиков?
Существуют ли 2016 целых чисел, сумма и произведение которых равны 2016?
На длинной ленте бумаги выписали все числа от 1 до 1000000 включительно (в некотором произвольном порядке). Затем ленту разрезали на кусочки по две цифры в каждом кусочке. Докажите, что в каком бы порядке ни выписывались числа, на кусочках встретятся все двузначные числа.
Страница: 1 2 3 4 5 6 7 >> [Всего задач: 41]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке