Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 46]
|
|
Сложность: 4 Классы: 7,8,9,10
|
Доминошки 1×2 кладут без наложений на шахматную доску 8×8. При этом доминошки могут вылезать за границу доски, но центр каждой доминошки должен лежать строго внутри доски (не на границе). Положите таким образом на доску
а) хотя бы 40 доминошек;
б) хотя бы 41 доминошку;
в) более 41 доминошки.
|
|
Сложность: 4 Классы: 9,10,11
|
Петя раскрасил каждую клетку квадрата 1000×1000 в один из 10 цветов. Также он придумал такой 10-клеточный многоугольник Ф, что при любом способе положить его по границам клеток на раскрашенный квадрат, все 10 накрытых им клеток будут разного цвета. Обязательно ли Ф – прямоугольник?
|
|
Сложность: 4 Классы: 9,10,11
|
При каких натуральных n для каждого целого k ≥ n найдётся кратное n число с суммой цифр k?
|
|
Сложность: 4+ Классы: 8,9,10
|
а) Группа людей прошла опрос, состоящий из 20 вопросов, на каждый из которых возможно два ответа. После опроса оказалось, что для любых 10 вопросов и любой комбинации ответов на эти вопросы существует человек, давший именно эти ответы на эти вопросы. Обязательно ли найдутся два человека, у которых ответы ни на один вопрос не совпали?
б) Решите ту же задачу, если на каждый вопрос есть 12 вариантов ответа.
|
|
Сложность: 5- Классы: 9,10,11
|
В Чикаго живут 36 гангстеров, некоторые из которых враждуют между собой. Каждый гангстер состоит в нескольких бандах, причём нет двух банд с совпадающим составом. Оказалось, что гангстеры, состоящие в одной банде, не враждуют, но если гангстер не состоит в какой-то банде, то он враждует хотя бы с одним её участником. Какое наибольшее число банд могло быть в Чикаго?
Страница:
<< 4 5 6 7 8 9
10 >> [Всего задач: 46]