Страница: 1 2 >> [Всего задач: 7]
|
|
Сложность: 3 Классы: 8,9,10,11
|
На параболе y = x² выбраны четыре точки A, B, C, D так, что прямые AB и CD пересекаются на оси ординат.
Найдите абсциссу точки D, если абсциссы точек A, B и C равны a, b и c соответственно.
|
|
Сложность: 4- Классы: 7,8,9
|
Выпуклая фигура F обладает следующим свойством: любой правильный треугольник со стороной 1 можно параллельно перенести так, что все его вершины попадут на границу F. Обязательно ли F – круг?
Задача
66199
(#3)
|
|
Сложность: 4- Классы: 9,10,11
|
Пусть f(x) – некоторый многочлен ненулевой степени.
Может ли оказаться, что уравнение f(x) = a при любом значении a имеет чётное число решений?
Задача
66196
(#4)
|
|
Сложность: 4- Классы: 8,9,10,11
|
Капитан Врунгель в своей каюте разложил перетасованную колоду из 52 карт по кругу, оставив одно место свободным. Матрос Фукс с палубы, не отходя от штурвала и не зная начальной раскладки, называет карту. Если эта карта лежит рядом со свободным местом, Врунгель её туда передвигает, не сообщая Фуксу. Иначе ничего не происходит. Потом Фукс называет еще одну карту, и так сколько угодно раз, пока он не скажет “стоп”. Может ли Фукс добиться того, чтобы после слова "стоп"
а) каждая карта наверняка оказалась не там, где была вначале?
б) рядом со свободным местом наверняка не было туза пик?
Задача
66201
(#5)
|
|
Сложность: 4+ Классы: 10,11
|
От правильного октаэдра со стороной 1 отрезали шесть углов – пирамидок с квадратным основанием и ребром ⅓. Получился многогранник, грани которого – квадраты и правильные шестиугольники. Можно ли копиями такого многогранника замостить пространство?
Страница: 1 2 >> [Всего задач: 7]