ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



Задача 66581  (#3)

Темы:   [ Деление с остатком. Арифметика остатков ]
[ Теория алгоритмов (прочее) ]
Сложность: 3
Классы: 8,9,10

Автор: Дидин М.

В комнате находится несколько детей и куча из 2021 конфеты. Каждый из них по очереди подходит к куче, делит количество конфет в ней на количество детей в комнате (включая себя), округляет (если получилось нецелое число), забирает полученное число конфет и покидает комнату. При этом мальчики округляют вверх, а девочки – вниз. Докажите, что суммарное количество конфет у мальчиков, когда все выйдут из комнаты, не зависит от порядка детей в очереди.
Прислать комментарий     Решение


Задача 66587  (#3)

Темы:   [ Построения (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 3+
Классы: 9,10,11

В узлах сетки клетчатого прямоугольника $4 \times 5$ расположены $30$ лампочек, изначально все они погашены. За ход разрешается провести любую прямую, не задевающую лампочек (размерами лампочек следует пренебречь, считая их точками), такую, что с какой-то одной стороны от нее ни одна лампочка не горит, и зажечь все лампочки по эту сторону от прямой. Каждым ходом нужно зажигать хотя бы одну лампочку. Можно ли зажечь все лампочки ровно за четыре хода?
Прислать комментарий     Решение


Задача 66593  (#3)

Темы:   [ Индукция (прочее) ]
[ Теория алгоритмов (прочее) ]
Сложность: 4
Классы: 9,10,11

Автор: Шень А.Х.

Есть бесконечная в одну сторону клетчатая полоска, клетки которой пронумерованы натуральными числами, и мешок с десятью камнями. В клетках полоски камней изначально нет. Можно делать следующее:

– перемещать камень из мешка в первую клетку полоски или обратно;

– если в клетке с номером $i$ лежит камень, то можно переложить камень из мешка в клетку с номером $i + 1$ или обратно.

Можно ли, действуя по этим правилам, положить камень в клетку с номером 1000?

Прислать комментарий     Решение

Задача 66588  (#3)

Темы:   [ Вписанные четырехугольники ]
[ Угол между касательной и хордой ]
[ Средняя линия треугольника ]
[ Теорема о длинах касательной и секущей; произведение всей секущей на ее внешнюю часть ]
Сложность: 4-
Классы: 8,9,10,11

Точка $M$ – середина стороны $BC$ треугольника $ABC$. Окружность $\omega$ проходит через точку $A$, касается прямой $BC$ в точке $M$ и пересекает сторону $AB$ в точке $D$, а сторону $AC$ – в точке $E$. Пусть $X$ и $Y$ – середины отрезков $BE$ и $CD$ соответственно. Докажите, что окружность, описанная около треугольника $MXY$, касается $\omega$.
Прислать комментарий     Решение


Задача 66602  (#3)

Тема:   [ Делимость чисел. Общие свойства ]
Сложность: 3+
Классы: 8,9,10,11

Найдите наименьшее натуральное число $N>9$, которое не делится на 7, но если вместо любой его цифры поставить семерку, то получится число, которое делится на 7.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 29]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .