ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 5 6 7 8 9 10 11 [Всего задач: 51]      



Задача 66888

Тема:   [ Комбинаторика (прочее) ]
Сложность: 6
Классы: 8,9,10,11

Автор: Белухов Н.

Белая фигура «жук» стоит в угловой клетке доски $1000\times n$, где $n$ — нечётное натуральное число, большее $2020$. В двух ближайших к ней углах доски стоят два чёрных шахматных слона. При каждом ходе жук или переходит на клетку, соседнюю по стороне, или ходит как шахматный конь. Жук хочет достичь противоположного угла доски, не проходя через клетки, занятые или атакованные слоном, и побывав на каждой из остальных клеток ровно по одному разу. Покажите, что количество путей, по которым может пройти жук, не зависит от $n$.
Прислать комментарий     Решение


Страница: << 5 6 7 8 9 10 11 [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .