ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



Задача 66873

Темы:   [ Неравенство треугольника (прочее) ]
[ Отношение, в котором биссектриса делит сторону ]
Сложность: 4
Классы: 8,9,10,11

Стороны треугольника разделены основаниями биссектрис на два отрезка каждая. Обязательно ли из шести образовавшихся отрезков можно составить два треугольника?
Прислать комментарий     Решение


Задача 66874

Темы:   [ Вспомогательная раскраска (прочее) ]
[ Логика и теория множеств (прочее) ]
Сложность: 4
Классы: 8,9,10,11

По кругу лежит 101 монета, каждая весит 10 г или 11 г. Докажите, что найдётся монета, для которой суммарная масса $k$ монет слева от неё равна суммарной массе $k$ монет справа от неё, если
а) k=50;
б) k=49.
Прислать комментарий     Решение


Задача 66883

Тема:   [ Свойства коэффициентов многочлена ]
Сложность: 4
Классы: 8,9,10,11

Автор: Ивлев Ф.

Барон Мюнхгаузен придумал теорему: если многочлен $x^n - a x^{n-1} + bx^{n-2} + \ldots $ имеет $n$ натуральных корней, то на плоскости найдутся $a$ прямых, у которых ровно $b$ точек пересечения друг с другом. Не ошибается ли барон?
Прислать комментарий     Решение


Задача 66884

Тема:   [ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10,11

Автор: Кноп К.А.

Окружности $\alpha$ и $\beta$ с центрами в точках $A$ и $B$ соответственно пересекаются в точках $C$ и $D$. Отрезок $AB$ пересекает окружности $\alpha$ и $\beta$ в точках $K$ и $L$ соответственно. Луч $DK$ вторично пересекает окружность $\beta$ в точке $N$, а луч $DL$ вторично пересекает окружность $\alpha$ в точке $M$. Докажите, что точка пересечения диагоналей четырёхугольника $KLMN$ совпадает с центром вписанной окружности треугольника $ABC$.
Прислать комментарий     Решение


Задача 66898

Темы:   [ Вписанные и описанные окружности ]
[ Радикальная ось ]
[ Симметрия помогает решить задачу ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 4
Классы: 9,10,11

Пусть $O$ – центр описанной окружности остроугольного треугольника $ABC$, точка $M$ – середина стороны $AC$. Прямая $BO$ пересекает высоты $AA_1$ и $CC_1$ в точках $H_a$ и $H_c$ соответственно. Описанные окружности треугольников $BH_aA$ и $BH_cC$ вторично пересекаются в точке $K$. Докажите, что $K$ лежит на прямой $BM$.
Прислать комментарий     Решение


Страница: << 4 5 6 7 8 9 10 >> [Всего задач: 51]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .