ЗАДАЧИ
problems.ru |
О проекте
|
Об авторах
|
Справочник
Каталог по темам | по источникам | |
|
Туры:
|
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]
Каждая из функций f(x) и g(x) определена на всей числовой прямой и не является строго монотонной. Может ли быть, что и их сумма, и их разность строго монотонны на всей числовой прямой?
Точка M – середина стороны BC треугольника ABC. Окружность ω проходит через точку A, касается прямой BC в точке M и пересекает сторону AB в точке D, а сторону AC – в точке E. Пусть X и Y – середины отрезков BE и CD соответственно. Докажите, что окружность, описанная около треугольника MXY, касается ω.
На клетчатой доске лежат доминошки, не касаясь даже углами. Каждая доминошка занимает две соседние (по стороне) клетки доски. Нижняя левая и правая верхняя клетки доски свободны. Всегда ли можно пройти из левой нижней клетки в правую верхнюю, делая ходы только вверх и вправо на соседние по стороне клетки и не наступая на доминошки, если доска имеет размеры а) 100×101 клеток; б) 100×100 клеток?
Петя и Вася по очереди красят рёбра N-угольной пирамиды: Петя – в красный цвет, а Вася – в зелёный (ребро нельзя красить дважды). Начинает Петя. Выигрывает Вася, если после того, как все рёбра окрашены, из любой вершины пирамиды в любую другую вершину ведёт ломаная, состоящая из зелёных рёбер. В противном случае выигрывает Петя. Кто из игроков может действовать так, чтобы всегда выигрывать, как бы ни играл его соперник?
Точка I – центр вписанной окружности треугольника ABC, а T – точка касания этой окружности со стороной AC. Пусть P и Q – ортоцентры треугольников BAI и BCI. Докажите, что точки T, P, Q лежат на одной прямой.
Страница: << 2 3 4 5 6 7 8 >> [Всего задач: 51]
|
© 2004-...
МЦНМО
(о копирайте)
|
Пишите нам
|
![]() |
Проект осуществляется при поддержке