ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 [Всего задач: 5]      



Задача 66716  (#1)

Темы:   [ Пятиугольники ]
[ Вписанные и описанные окружности ]
[ Отрезок, видимый из двух точек под одним углом ]
Сложность: 3
Классы: 8,9,10,11

Можно ли внутри правильного пятиугольника разместить отрезок, который из всех вершин виден под одним и тем же углом?
Прислать комментарий     Решение


Задача 66712  (#2)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Разложение на множители ]
[ Алгебра и арифметика (прочее) ]
[ Разбиения на пары и группы; биекции ]
Сложность: 3
Классы: 8,9,10,11

Автор: Фольклор

Найдите все натуральные $n$, удовлетворяющие условию: числа $1, 2, 3, \ldots, 2n$ можно разбить на пары так, что если сложить числа в каждой паре и результаты перемножить, получится квадрат натурального числа.
Прислать комментарий     Решение


Задача 66718  (#3)

Темы:   [ Признаки и свойства параллелограмма ]
[ Вспомогательные равные треугольники ]
[ Угол между касательной и хордой ]
[ Углы, опирающиеся на равные дуги и равные хорды ]
Сложность: 4
Классы: 8,9,10,11

В параллелограмме $ABCD$ угол $A$ – острый. На стороне $AB$ отмечена такая точка $N$, что $CN = AB$. Оказалось, что описанная окружность треугольника $CBN$ касается прямой $AD$. Докажите, что она касается её в точке $D$.
Прислать комментарий     Решение


Задача 66715  (#4)

Темы:   [ Теория чисел. Делимость (прочее) ]
[ Десятичная запись числа ]
Сложность: 5
Классы: 8,9,10,11

Назовём девятизначное число красивым, если все его цифры различны. Докажите, что существует по крайней мере 1000 красивых чисел (или: не менее 2018), каждое из которых делится на 37.
Прислать комментарий     Решение


Задача 66720  (#5)

Темы:   [ Замощения костями домино и плитками ]
[ Комбинаторика (прочее) ]
Сложность: 5
Классы: 8,9,10,11

Петя расставляет 500 королей на клетках доски $100\times 50$ так, чтобы они не били друг друга. А Вася — 500 королей на белых клетках (в шахматной раскраске) доски $100\times 100$ так, чтобы они не били друг друга. У кого больше способов это сделать?
Прислать комментарий     Решение


Страница: 1 [Всего задач: 5]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .