ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: 1 2 >> [Всего задач: 7]      



Задача 66745  (#1)

Темы:   [ Логика и теория множеств (прочее) ]
[ Кооперативные алгоритмы ]
Сложность: 3+
Классы: 8,9,10,11

Король вызвал двух мудрецов и объявил им задание: первый задумывает семь различных натуральных чисел с суммой 100, тайно сообщает их королю, а второму мудрецу называет лишь четвёртое по величине из этих чисел, после чего второй должен отгадать задуманные числа. У мудрецов нет возможности сговориться. Могут ли мудрецы гарантированно справиться с заданием?

Прислать комментарий     Решение

Задача 66746  (#2)

Тема:   [ Симметричная стратегия ]
Сложность: 4-
Классы: 8,9,10,11

На прямой сидят 2019 точечных кузнечиков. За ход какой-нибудь из кузнечиков прыгает через какого-нибудь другого так, чтобы оказаться на прежнем расстоянии от него. Прыгая только вправо, кузнечики могут добиться того, чтобы какие-то двое из них оказались на расстоянии ровно 1 мм друг от друга. Докажите, что кузнечики могут добиться того же, прыгая из начального положения только влево.

Прислать комментарий     Решение

Задача 66747  (#3)

Темы:   [ Биссектриса делит дугу пополам ]
[ Биссектриса угла (ГМТ) ]
Сложность: 4-
Классы: 8,9,10,11

К плоскости приклеены два непересекающихся деревянных круга одинакового размера – серый и чёрный. Дан деревянный треугольник, одна сторона которого серая, а другая – чёрная. Его передвигают так, чтобы круги были снаружи треугольника, причём серая сторона касалась серого круга, а чёрная – чёрного (касание происходит не в вершинах). Докажите, что прямая, содержащая биссектрису угла между серой и чёрной сторонами, всегда проходит через одну и ту же точку плоскости.

Прислать комментарий     Решение

Задача 66748  (#4)

Темы:   [ Алгебра и арифметика (прочее) ]
[ Задачи на максимум и минимум (прочее) ]
Сложность: 4-
Классы: 8,9,10,11

Каждый отрезок с концами в вершинах правильного 100-угольника покрасили – в красный цвет, если между его концами чётное число вершин, и в синий – в противном случае (в частности, все стороны 100-угольника красные). В вершинах расставили числа, сумма квадратов которых равна 1, а на отрезках – произведения чисел в концах. Затем из суммы чисел на красных отрезках вычли сумму чисел на синих. Какое наибольшее число могло получиться?

Прислать комментарий     Решение

Задача 66749  (#5)

Темы:   [ Числовые таблицы и их свойства ]
[ Примеры и контрпримеры. Конструкции ]
[ Четность и нечетность ]
Сложность: 4
Классы: 8,9,10,11

В клетках квадратной таблицы $n\times n$, где  $n$ > 1,  требуется расставить различные целые числа от 1 до $n^2$ так, чтобы каждые два последовательных числа оказались в соседних по стороне клетках, а каждые два числа, дающие одинаковые остатки при делении на $n$, – в разных строках и в разных столбцах. При каких $n$ это возможно?

Прислать комментарий     Решение

Страница: 1 2 >> [Всего задач: 7]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .