Страница:
<< 1 2 3 4
5 6 >> [Всего задач: 26]
|
|
|
Сложность: 3+ Классы: 8,9,10,11
|
В коллекции Алика есть два типа предметов: значки и браслеты. Значков больше, чем браслетов. Алик заметил, что если он увеличит количество браслетов в некоторое (не обязательно целое) число раз, не изменив количества значков, то в его коллекции будет 100 предметов. А если, наоборот, он увеличит в это же число раз первоначальное количество значков, оставив прежним количество браслетов, то у него будет 101 предмет. Сколько значков и сколько браслетов могло быть в коллекции Алика?
|
|
|
Сложность: 3+ Классы: 9,10,11
|
В остроугольном треугольнике $ABC$ проведена биссектриса $AL$. На продолжении отрезка $LA$ за точку $A$ выбрана точка $K$ так, что $AK = AL$. Описанные окружности треугольников $BLK$ и $CLK$ пересекают отрезки $AC$ и $AB$ в точках $P$ и $Q$ соответственно. Докажите, что прямые $PQ$ и $BC$ параллельны.
|
|
|
Сложность: 4- Классы: 8,9,10,11
|
По доске $n$×$n$ прошла ладья, побывав в каждой клетке один раз, причем каждый её ход был ровно на одну клетку. Клетки занумерованы от 1 до $n^2$ в порядке прохождения ладьи. Пусть $M$ – максимальная разность между номерами соседних (по стороне) клеток. Каково наименьшее возможное значение $M$?
|
|
|
Сложность: 4- Классы: 8,9,10
|
Некоторые клетки доски $100 \times 100$ покрашены в чёрный цвет. Во всех строках и столбцах, где есть чёрные клетки, их количество нечётно. В каждой строке, где есть чёрные клетки, поставим красную фишку в среднюю по счёту чёрную клетку. В каждом столбце, где есть чёрные клетки, поставим синюю фишку в среднюю по счёту чёрную клетку. Оказалось, что все красные фишки стоят в разных столбцах, а синие фишки — в разных строках. Докажите, что найдётся клетка, в которой стоят и синяя, и красная фишки.
|
|
|
Сложность: 4- Классы: 9,10,11
|
Султан собрал 300 придворных мудрецов и предложил им испытание. Имеются колпаки 25 различных цветов, заранее известных мудрецам. Султан сообщил, что на каждого из мудрецов наденут один из этих колпаков, причём если для каждого цвета написать количество надетых колпаков, то все числа будут различны. Каждый мудрец будет видеть колпаки остальных мудрецов, а свой колпак нет. Затем все мудрецы одновременно огласят предполагаемый цвет своего колпака. Могут ли мудрецы заранее договориться действовать так, чтобы гарантированно хотя бы 150 из них назвали цвет верно?
Страница:
<< 1 2 3 4
5 6 >> [Всего задач: 26]