ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



Задача 67016

Темы:   [ Четырехугольники (прочее) ]
[ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4
Классы: 8,9,10,11

Автор: Юран А.Ю.

Верно ли, что из любого выпуклого четырёхугольника можно вырезать три уменьшенные вдвое копии этого четырёхугольника?

Прислать комментарий     Решение

Задача 67022

Темы:   [ Вписанные и описанные окружности ]
[ Площадь треугольника (через полупериметр и радиус вписанной или вневписанной окружности) ]
[ Равнобедренные, вписанные и описанные трапеции ]
Сложность: 4
Классы: 9,10,11

Два треугольника пересекаются по шестиугольнику, который отсекает от них 6 маленьких треугольников. Радиусы вписанных окружностей этих шести треугольников равны.
Докажите, что радиусы вписанных окружностей двух исходных треугольников также равны.

Прислать комментарий     Решение

Задача 67026

Темы:   [ Теорема Безу. Разложение на множители ]
[ Многочлен n-й степени имеет не более n корней ]
[ Теорема Виета ]
Сложность: 4
Классы: 9,10,11

Дан многочлен степени 2022 с целыми коэффициентами и со старшим коэффициентом 1. Какое наибольшее число корней он может иметь на интервале  (0, 1)?
Прислать комментарий     Решение


Задача 67027

Темы:   [ Последовательности (прочее) ]
[ Разбиения на пары и группы; биекции ]
[ Сочетания и размещения ]
Сложность: 4
Классы: 8,9,10,11

Андрей Михайлович выписал на доску все возможные последовательности длины $2022$, состоящие из 1011 нулей и 1011 единиц. Назовём две последовательности совместимыми, если они совпадают ровно в 4 позициях. Докажите, что Андрей Михайлович может разбить все последовательности на 20 групп так, чтобы никакие две совместимые последовательности не попали в одну группу.
Прислать комментарий     Решение


Задача 67031

Темы:   [ Максимальное/минимальное расстояние ]
[ Стереометрия (прочее) ]
Сложность: 4
Классы: 9,10,11

Звездолёт находится в полупространстве на расстоянии $a$ от его границы. Экипаж знает об этом, но не представляет, в каком направлении двигаться, чтобы достигнуть граничной плоскости. Звездолёт может лететь в пространстве по любой траектории, измеряя длину пройденного пути, и имеет датчик, подающий сигнал, когда граница достигнута. Может ли звездолёт гарантированно достигнуть границы, преодолев путь длиной не более $14a$?
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 6 >> [Всего задач: 26]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .