Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 51]
|
|
Сложность: 4 Классы: 7,8,9,10,11
|
Барон Мюнхгаузен утверждает, что нарисовал многоугольник и точку внутри него так, что любая прямая, проходящая через эту точку, делит этот многоугольник на три многоугольника. Может ли барон быть прав?
|
|
Сложность: 4 Классы: 8,9,10,11
|
Какой наибольший рациональный корень может иметь уравнение вида
$aх^2 + bx + c = 0$, где $a$, $b$ и $c$ – натуральные числа, не превосходящие 100?
|
|
Сложность: 4 Классы: 8,9,10,11
|
В клетчатом квадрате между каждыми двумя соседними по стороне клетками есть закрытая дверь. Жук начинает с какой-то клетки и ходит по клеткам, проходя через двери. Закрытую дверь он открывает в ту сторону, в которую идёт, и оставляет дверь открытой. Через открытую дверь жук может пройти только в ту сторону, в которую дверь была открыта. Докажите, что если жук в какой-либо момент захочет вернуться в исходную клетку, то он сможет это сделать.
|
|
Сложность: 4 Классы: 7,8,9
|
Докажите, что в прямоугольном треугольнике с углом $30$ градусов одна биссектриса в два раза короче другой.
|
|
Сложность: 4 Классы: 7,8,9
|
Назовём натуральное число
хорошим, если в его десятичной записи есть только нули и единицы. Пусть произведение двух хороших чисел оказалось хорошим числом. Правда ли, что тогда сумма цифр произведения равна произведению сумм цифр сомножителей?
(В 44-м Турнире городов задача предлагалась в эквивалентной формулировке: хорошие числа были названы заурядными)
Страница:
<< 1 2 3 4
5 6 7 >> [Всего задач: 51]