Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 51]
|
|
Сложность: 4- Классы: 8,9,10,11
|
Даны два взаимно простых числа p, q, больших 1 и различающихся больше, чем
на 1. Докажите, что найдётся натуральное n, для которого НОК(p + n, q + n) < НОК(p, q).
|
|
Сложность: 4- Классы: 9,10,11
|
Существует ли целое $n>1$, удовлетворяющее неравенству
$$[\sqrt{n-2} + 2\sqrt{n+2}] < [\sqrt{9n+6}]?$$
(Здесь $[x]$ обозначает целую часть числа $x$, то есть наибольшее целое число, не превосходящее $x$.)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Существует ли натуральное число, которое можно представить в виде произведения двух палиндромов более чем 100 способами? (Палиндромом называется натуральное число, которое одинаково читается как слева направо, так и справа налево.)
|
|
Сложность: 4 Классы: 8,9,10,11
|
Пятиугольник $ABCDE$ описан около окружности. Углы при его вершинах $A$, $C$ и $E$ равны $100^\circ$. Найдите угол $ACE$.
|
|
Сложность: 4 Классы: 7,8,9,10
|
У Пети есть 8 монет, про которые он знает только, что 7 из них настоящие и весят одинаково, а одна фальшивая и отличается от настоящей по весу, неизвестно в какую сторону. У Васи есть чашечные весы – они показывают, какая чашка тяжелее, но не показывают, насколько. За каждое взвешивание Петя платит Васе (до взвешивания) одну монету из имеющихся у него. Если уплачена настоящая монета, Вася сообщит Пете верный результат взвешивания, а если фальшивая, то случайный. Петя хочет определить 5 настоящих монет и не отдать ни одну из этих монет Васе. Может ли Петя гарантированно этого добиться?
Страница:
<< 1 2
3 4 5 6 7 >> [Всего задач: 51]