ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Задачи

Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



Задача 67341

Темы:   [ Векторы помогают решить задачу ]
[ Четыре точки, лежащие на одной окружности ]
Сложность: 3+
Классы: 9,10,11

В четырехугольнике $ABCD$ $\angle B=\angle D$ и $AD=CD$. Окружность, вписанная в треугольник $ABC$, касается сторон $BC$ и $AB$ в точках $E$ и $F$ соответственно. Докажите, что середины отрезков $AC$, $BD$, $AE$ и $CF$ лежат на одной окружности.
Прислать комментарий     Решение


Задача 67346

Тема:   [ Разрезания на части, обладающие специальными свойствами ]
Сложность: 4-
Классы: 8,9,10,11

Верно ли, что любой многоугольник можно разрезать на равнобокие трапеции?
Прислать комментарий     Решение


Задача 67345

Темы:   [ Вспомогательные подобные треугольники ]
[ Теорема синусов ]
Сложность: 4
Классы: 8,9,10,11

Биссектрисы $AA_1$, $CC_1$ треугольника $ABC$, в котором $\angle B=60^{\circ}$, пересекаются в точке $I$. Описанные окружности треугольников $ABC$, $A_1IC_1$ пересекаются в точке $P$. Докажите, что прямая $PI$ проходит через середину стороны $AC$.
Прислать комментарий     Решение


Задача 67339

Темы:   [ ГМТ - прямая или отрезок ]
[ Поворотная гомотетия (прочее) ]
Сложность: 4
Классы: 8,9,10,11

Автор: Шекера А.

Даны окружность $\omega$ и точки $A$ и $B$ на ней. Пусть $C$ – произвольная точка на одной из дуг $AB$ этой окружности, $CL$ – биссектриса треугольника $ABC$, окружность $BCL$ пересекает $AC$ в $E$, а $CL$ пересекает $BE$ в $F$. Найдите геометрическое место центров окружностей $AFC$.
Прислать комментарий     Решение


Задача 67340

Темы:   [ Вписанные четырехугольники (прочее) ]
[ Описанные четырехугольники ]
[ Четырехугольники (построения) ]
Сложность: 4
Классы: 8,9,10,11

Постройте вписанно-описанный четырёхугольник по двум противоположным вершинам и центру вписанной окружности.
Прислать комментарий     Решение


Страница: << 1 2 3 4 5 >> [Всего задач: 24]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .