ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрана 1 задача
Версия для печати
Убрать все задачи

Точки A, B, C делят стороны выпуклого четырёхугольника KLMN в отношении  AK : AL = BM : BL = CM : CN = 1 : 2.  Площадь четырёхугольника KLMN
равна 9AB = BC = 2.  Каков радиус описанной окружности треугольника ABC, если известно, что  AC > AB?

   Решение

Задачи

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



Задача 32074

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9,10

Докажите, что произведение ста последовательных натуральных чисел не может быть сотой степенью натурального числа.

Прислать комментарий     Решение

Задача 35796

Темы:   [ Произведения и факториалы ]
[ НОД и НОК. Взаимная простота ]
[ Доказательство от противного ]
Сложность: 3+
Классы: 8,9

Может ли произведение 2002 последовательных натуральных чисел являться 2002-й степенью натурального числа?

Прислать комментарий     Решение

Задача 61398

Темы:   [ Произведения и факториалы ]
[ Алгебраические неравенства (прочее) ]
[ Числовые неравенства. Сравнения чисел. ]
Сложность: 3+
Классы: 9,10,11

Докажите справедливость оценок:

  а)  

  б)  

  в)  

  г)  

Прислать комментарий     Решение

Задача 64673

Темы:   [ Произведения и факториалы ]
[ Десятичная система счисления ]
[ Формулы сокращенного умножения (прочее) ]
Сложность: 3+
Классы: 10,11

Произведение четырёх последовательных положительных нечётных чисел оканчивается на 9. Найдите две предпоследние цифры этого произведения.

Прислать комментарий     Решение

Задача 64788

Темы:   [ Произведения и факториалы ]
[ Обыкновенные дроби ]
[ Основная теорема арифметики. Разложение на простые сомножители ]
Сложность: 3+
Классы: 7,8

Число    записали в виде несократимой дроби. Найдите её знаменатель.

Прислать комментарий     Решение

Страница: << 1 2 3 4 5 6 7 >> [Всего задач: 121]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .