ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 3 задачи
Версия для печати
Убрать все задачи

Найдите корень уравнения 22-x = 8 .

Вниз   Решение


Дан прямоугольный параллелепипед ABCDA1B1C1D1 , в котором AB =2 , AD = 4 , BB1 = 12 . Точки M и K расположены на рёбрах CC1 и AD соответственно, причём CM:MC1 = 1:2 , AK = KD . Найдите угол между прямыми AM и KB1 .

ВверхВниз   Решение


Из вершины тупого угла ромба ABCD проведены высоты BM и BN. В четырёхугольник BMDN вписана окружность радиуса 1. Найдите сторону ромба, если $ \angle$ABC = 2arctg2.

Вверх   Решение

Задачи

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 171]      



Задача 60402

Темы:   [ Сочетания и размещения ]
[ Десятичная система счисления ]
Сложность: 2+
Классы: 8,9,10

Сколько существует шестизначных чисел, у которых каждая последующая цифра меньше предыдущей?

Прислать комментарий     Решение

Задача 65346

Тема:   [ Сочетания и размещения ]
Сложность: 2+
Классы: 8,9,10,11

Квадрат разбит на треугольники (см. рисунок). Сколько существует способов закрасить ровно треть квадрата? Маленькие треугольники нельзя красить частично.

Прислать комментарий     Решение

Задача 104048

Темы:   [ Сочетания и размещения ]
[ Раскладки и разбиения ]
Сложность: 2+
Классы: 7,8,9

Сколькими способами можно разложить девять орехов по трём карманам? (Карманы разные, а орехи одинаковые.)

Прислать комментарий     Решение

Задача 30701

Темы:   [ Сочетания и размещения ]
[ Правило произведения ]
Сложность: 2+
Классы: 7,8

Сколькими способами можно расставить 12 белых и 12 чёрных шашек на чёрных полях шахматной доски?

Прислать комментарий     Решение

Задача 60391

Темы:   [ Сочетания и размещения ]
[ Системы точек и отрезков (прочее) ]
[ Правило произведения ]
[ Произвольные многоугольники ]
Сложность: 2+
Классы: 8,9

Сколько диагоналей имеет выпуклый:
а) 10-угольник;   б) k-угольник  (k > 3)?

Прислать комментарий     Решение

Страница: << 3 4 5 6 7 8 9 >> [Всего задач: 171]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .