Loading [Contrib]/a11y/accessibility-menu.js
ЗАДАЧИ
problems.ru
О проекте | Об авторах | Справочник
Каталог по темам | по источникам |
К задаче N

Проект МЦНМО
при участии
школы 57
Фильтр
Сложность с по   Класс с по  
Выбрано 2 задачи
Версия для печати
Убрать все задачи

Как известно, квадратное уравнение имеет не более двух корней. А может ли уравнение $[x^2] + px + q = 0$ при $p \ne 0$ иметь более 100 корней? ($[x^2]$ обозначает наибольшее целое число, не превосходящее $x^2$.)

Вниз   Решение


За круглым столом сидят несколько гостей. Некоторые из них знакомы между собой; знакомство взаимно. Все знакомые каждого гостя (считая его самого) сидят вокруг стола через равные промежутки. (Для другого человека эти промежутки могут быть другими.) Известно, что каждые двое имеют хотя бы одного общего знакомого. Докажите, что все гости знакомы друг с другом.

Вверх   Решение

Задачи

Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 159]      



Задача 52945

Темы:   [ Вписанный угол, опирающийся на диаметр ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

На высоте CD, опущенной из вершины C прямоугольного треугольника ABC на гипотенузу AB, как на диаметре построена окружность, которая пересекает катет AC в точке E, а катет BC в точке F. Найдите площадь четырёхугольника CFDE, если катет AC равен b, а катет BC равен a.

Прислать комментарий     Решение


Задача 53795

Темы:   [ Подобные треугольники (прочее) ]
[ Средние пропорциональные в прямоугольном треугольнике ]
[ Прямоугольный треугольник с углом в $30^\circ$ ]
Сложность: 3+
Классы: 8,9

Треугольник ABC не имеет тупых углов. На стороне AC этого треугольника взята точка D так, что  AD = ¾ AC.  Найдите угол A, если известно, что прямая BD разбивает треугольник ABC на два подобных треугольника.

Прислать комментарий     Решение

Задача 54214

Темы:   [ Равнобедренные, вписанные и описанные трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Найдите диагональ и боковую сторону равнобедренной трапеции с основаниями 20 и 12, если известно, что центр её описанной окружности лежит на большем основании.

Прислать комментарий     Решение


Задача 54324

Темы:   [ Две касательные, проведенные из одной точки ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Дан треугольник ABC. Окружность радиуса R касается прямых AB и BC в точках A и C и пересекает медиану BD в точке L, причём  BL = 5/9 BD.
Найдите площадь треугольника.

Прислать комментарий     Решение

Задача 54910

Темы:   [ Проекции оснований, сторон или вершин трапеции ]
[ Средние пропорциональные в прямоугольном треугольнике ]
Сложность: 3+
Классы: 8,9

Диагональ равнобедренной трапеции перпендикулярна боковой стороне. Найдите острый угол и большее основание трапеции, если меньшее основание равно 3, а высота трапеции равна 2.

Прислать комментарий     Решение


Страница: << 11 12 13 14 15 16 17 >> [Всего задач: 159]      



© 2004-... МЦНМО (о копирайте)
Пишите нам

Проект осуществляется при поддержке Департамента образования г.Москвы и ФЦП "Кадры" .